| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2019 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_BPMATCHING_H |
| 20 | #define LEMON_BPMATCHING_H |
| 21 | |
| 22 | #include <limits> |
| 23 | |
| 24 | #include <lemon/core.h> |
| 25 | #include <lemon/unionfind.h> |
| 26 | #include <lemon/bin_heap.h> |
| 27 | #include <lemon/maps.h> |
| 28 | |
| 29 | ///\ingroup matching |
| 30 | ///\file |
| 31 | ///\brief Maximum matching algorithms in bipartite graphs. |
| 32 | |
| 33 | namespace lemon { |
| 34 | |
| 35 | /// \ingroup matching |
| 36 | /// |
| 37 | /// \brief Weighted matching in bipartite graphs |
| 38 | /// |
| 39 | /// This class provides an efficient implementation of multiple search tree |
| 40 | /// augmenting path matching algorithm. The implementation is based on |
| 41 | /// extensive use of priority queues and provides \f$O(nm\log n)\f$ time |
| 42 | /// complexity. |
| 43 | /// |
| 44 | /// The maximum weighted matching problem is to find a subset of the |
| 45 | /// edges in a bipartite graph with maximum overall weight for which |
| 46 | /// each node has at most one incident edge. |
| 47 | /// It can be formulated with the following linear program. |
| 48 | /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
| 49 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
| 50 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| 51 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 52 | /// \f$X\f$. |
| 53 | /// |
| 54 | /// The algorithm calculates an optimal matching and a proof of the |
| 55 | /// optimality. The solution of the dual problem can be used to check |
| 56 | /// the result of the algorithm. The dual linear problem is the |
| 57 | /// following. |
| 58 | /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
| 59 | /// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 60 | /// \f[\min \sum_{u \in V}y_u \f] |
| 61 | /// \tparam BPGR The bipartite graph type the algorithm runs on. |
| 62 | /// \tparam WM The type edge weight map. The default type is |
| 63 | /// \ref concepts::BpGraph::EdgeMap "BPGR::EdgeMap<int>". |
| 64 | #ifdef DOXYGEN |
| 65 | template <typename BPGR, typename WM> |
| 66 | #else |
| 67 | template <typename BPGR, |
| 68 | typename WM = typename BPGR::template EdgeMap<int> > |
| 69 | #endif |
| 70 | class MaxWeightedBpMatching { |
| 71 | public: |
| 72 | |
| 73 | /// The graph type of the algorithm |
| 74 | typedef BPGR BpGraph; |
| 75 | /// The type of the edge weight map |
| 76 | typedef WM WeightMap; |
| 77 | /// The value type of the edge weights |
| 78 | typedef typename WeightMap::Value Value; |
| 79 | |
| 80 | /// The type of the matching map |
| 81 | typedef typename BpGraph::template NodeMap<typename BpGraph::Arc> |
| 82 | MatchingMap; |
| 83 | |
| 84 | /// \brief Scaling factor for dual solution |
| 85 | /// |
| 86 | /// Scaling factor for dual solution. It is equal to 4 or 1 |
| 87 | /// according to the value type. |
| 88 | static const int dualScale = |
| 89 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 90 | |
| 91 | private: |
| 92 | |
| 93 | TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph); |
| 94 | |
| 95 | typedef typename BpGraph::template NodeMap<Value> NodePotential; |
| 96 | |
| 97 | const BpGraph& _bpgraph; |
| 98 | const WeightMap& _weight; |
| 99 | |
| 100 | MatchingMap* _matching; |
| 101 | |
| 102 | NodePotential* _node_potential; |
| 103 | |
| 104 | int _node_num; |
| 105 | |
| 106 | enum Status { |
| 107 | EVEN = -1, MATCHED = 0, ODD = 1 |
| 108 | }; |
| 109 | |
| 110 | typedef typename BpGraph::template NodeMap<Status> StatusMap; |
| 111 | StatusMap* _status; |
| 112 | |
| 113 | typedef typename BpGraph::template NodeMap<Arc> PredMap; |
| 114 | PredMap* _pred; |
| 115 | |
| 116 | typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| 117 | IntNodeMap *_tree_set_index; |
| 118 | TreeSet *_tree_set; |
| 119 | |
| 120 | IntNodeMap *_delta1_index; |
| 121 | BinHeap<Value, IntNodeMap> *_delta1; |
| 122 | |
| 123 | IntNodeMap *_delta2_index; |
| 124 | BinHeap<Value, IntNodeMap> *_delta2; |
| 125 | |
| 126 | IntEdgeMap *_delta3_index; |
| 127 | BinHeap<Value, IntEdgeMap> *_delta3; |
| 128 | |
| 129 | Value _delta_sum; |
| 130 | int _unmatched; |
| 131 | |
| 132 | void createStructures() { |
| 133 | _node_num = countNodes(_bpgraph); |
| 134 | |
| 135 | if (!_matching) { |
| 136 | _matching = new MatchingMap(_bpgraph); |
| 137 | } |
| 138 | |
| 139 | if (!_node_potential) { |
| 140 | _node_potential = new NodePotential(_bpgraph); |
| 141 | } |
| 142 | |
| 143 | if (!_status) { |
| 144 | _status = new StatusMap(_bpgraph); |
| 145 | } |
| 146 | |
| 147 | if (!_pred) { |
| 148 | _pred = new PredMap(_bpgraph); |
| 149 | } |
| 150 | |
| 151 | if (!_tree_set) { |
| 152 | _tree_set_index = new IntNodeMap(_bpgraph); |
| 153 | _tree_set = new TreeSet(*_tree_set_index); |
| 154 | } |
| 155 | |
| 156 | if (!_delta1) { |
| 157 | _delta1_index = new IntNodeMap(_bpgraph); |
| 158 | _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| 159 | } |
| 160 | |
| 161 | if (!_delta2) { |
| 162 | _delta2_index = new IntNodeMap(_bpgraph); |
| 163 | _delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
| 164 | } |
| 165 | |
| 166 | if (!_delta3) { |
| 167 | _delta3_index = new IntEdgeMap(_bpgraph); |
| 168 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | void destroyStructures() { |
| 173 | if (_matching) { |
| 174 | delete _matching; |
| 175 | } |
| 176 | if (_node_potential) { |
| 177 | delete _node_potential; |
| 178 | } |
| 179 | if (_status) { |
| 180 | delete _status; |
| 181 | } |
| 182 | if (_pred) { |
| 183 | delete _pred; |
| 184 | } |
| 185 | if (_tree_set) { |
| 186 | delete _tree_set_index; |
| 187 | delete _tree_set; |
| 188 | } |
| 189 | if (_delta2) { |
| 190 | delete _delta2_index; |
| 191 | delete _delta2; |
| 192 | } |
| 193 | if (_delta3) { |
| 194 | delete _delta3_index; |
| 195 | delete _delta3; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | void matchedToEven(Node node, int tree) { |
| 200 | _tree_set->insert(node, tree); |
| 201 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| 202 | _delta1->push(node, (*_node_potential)[node]); |
| 203 | |
| 204 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| 205 | _delta2->erase(node); |
| 206 | } |
| 207 | |
| 208 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| 209 | Node v = _bpgraph.source(a); |
| 210 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| 211 | dualScale * _weight[a]; |
| 212 | if ((*_status)[v] == EVEN) { |
| 213 | _delta3->push(a, rw / 2); |
| 214 | } else if ((*_status)[v] == MATCHED) { |
| 215 | if (_delta2->state(v) != _delta2->IN_HEAP) { |
| 216 | _pred->set(v, a); |
| 217 | _delta2->push(v, rw); |
| 218 | } else if ((*_delta2)[v] > rw) { |
| 219 | _pred->set(v, a); |
| 220 | _delta2->decrease(v, rw); |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | void matchedToOdd(Node node, int tree) { |
| 227 | _tree_set->insert(node, tree); |
| 228 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| 229 | |
| 230 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| 231 | _delta2->erase(node); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | void evenToMatched(Node node, int tree) { |
| 236 | _delta1->erase(node); |
| 237 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| 238 | Arc min = INVALID; |
| 239 | Value minrw = std::numeric_limits<Value>::max(); |
| 240 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| 241 | Node v = _bpgraph.source(a); |
| 242 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| 243 | dualScale * _weight[a]; |
| 244 | |
| 245 | if ((*_status)[v] == EVEN) { |
| 246 | _delta3->erase(a); |
| 247 | if (minrw > rw) { |
| 248 | min = _bpgraph.oppositeArc(a); |
| 249 | minrw = rw; |
| 250 | } |
| 251 | } else if ((*_status)[v] == MATCHED) { |
| 252 | if ((*_pred)[v] == a) { |
| 253 | Arc mina = INVALID; |
| 254 | Value minrwa = std::numeric_limits<Value>::max(); |
| 255 | for (OutArcIt aa(_bpgraph, v); aa != INVALID; ++aa) { |
| 256 | Node va = _bpgraph.target(aa); |
| 257 | if ((*_status)[va] != EVEN || |
| 258 | _tree_set->find(va) == tree) continue; |
| 259 | Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
| 260 | dualScale * _weight[aa]; |
| 261 | if (minrwa > rwa) { |
| 262 | minrwa = rwa; |
| 263 | mina = aa; |
| 264 | } |
| 265 | } |
| 266 | if (mina != INVALID) { |
| 267 | _pred->set(v, mina); |
| 268 | _delta2->increase(v, minrwa); |
| 269 | } else { |
| 270 | _pred->set(v, INVALID); |
| 271 | _delta2->erase(v); |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | if (min != INVALID) { |
| 277 | _pred->set(node, min); |
| 278 | _delta2->push(node, minrw); |
| 279 | } else { |
| 280 | _pred->set(node, INVALID); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | void oddToMatched(Node node) { |
| 285 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| 286 | Arc min = INVALID; |
| 287 | Value minrw = std::numeric_limits<Value>::max(); |
| 288 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| 289 | Node v = _bpgraph.source(a); |
| 290 | if ((*_status)[v] != EVEN) continue; |
| 291 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| 292 | dualScale * _weight[a]; |
| 293 | |
| 294 | if (minrw > rw) { |
| 295 | min = _bpgraph.oppositeArc(a); |
| 296 | minrw = rw; |
| 297 | } |
| 298 | } |
| 299 | if (min != INVALID) { |
| 300 | _pred->set(node, min); |
| 301 | _delta2->push(node, minrw); |
| 302 | } else { |
| 303 | _pred->set(node, INVALID); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | void alternatePath(Node even, int tree) { |
| 308 | Node odd; |
| 309 | |
| 310 | _status->set(even, MATCHED); |
| 311 | evenToMatched(even, tree); |
| 312 | |
| 313 | Arc prev = (*_matching)[even]; |
| 314 | while (prev != INVALID) { |
| 315 | odd = _bpgraph.target(prev); |
| 316 | even = _bpgraph.target((*_pred)[odd]); |
| 317 | _matching->set(odd, (*_pred)[odd]); |
| 318 | _status->set(odd, MATCHED); |
| 319 | oddToMatched(odd); |
| 320 | |
| 321 | prev = (*_matching)[even]; |
| 322 | _status->set(even, MATCHED); |
| 323 | _matching->set(even, _bpgraph.oppositeArc((*_matching)[odd])); |
| 324 | evenToMatched(even, tree); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | void destroyTree(int tree) { |
| 329 | for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
| 330 | if ((*_status)[n] == EVEN) { |
| 331 | _status->set(n, MATCHED); |
| 332 | evenToMatched(n, tree); |
| 333 | } else if ((*_status)[n] == ODD) { |
| 334 | _status->set(n, MATCHED); |
| 335 | oddToMatched(n); |
| 336 | } |
| 337 | } |
| 338 | _tree_set->eraseClass(tree); |
| 339 | } |
| 340 | |
| 341 | void unmatchNode(const Node& node) { |
| 342 | int tree = _tree_set->find(node); |
| 343 | |
| 344 | alternatePath(node, tree); |
| 345 | destroyTree(tree); |
| 346 | |
| 347 | _matching->set(node, INVALID); |
| 348 | } |
| 349 | |
| 350 | void augmentOnEdge(const Edge& edge) { |
| 351 | Node left = _bpgraph.u(edge); |
| 352 | int left_tree = _tree_set->find(left); |
| 353 | |
| 354 | alternatePath(left, left_tree); |
| 355 | destroyTree(left_tree); |
| 356 | _matching->set(left, _bpgraph.direct(edge, true)); |
| 357 | |
| 358 | Node right = _bpgraph.v(edge); |
| 359 | int right_tree = _tree_set->find(right); |
| 360 | |
| 361 | alternatePath(right, right_tree); |
| 362 | destroyTree(right_tree); |
| 363 | _matching->set(right, _bpgraph.direct(edge, false)); |
| 364 | } |
| 365 | |
| 366 | void augmentOnArc(const Arc& arc) { |
| 367 | Node left = _bpgraph.source(arc); |
| 368 | _status->set(left, MATCHED); |
| 369 | _matching->set(left, arc); |
| 370 | _pred->set(left, arc); |
| 371 | |
| 372 | Node right = _bpgraph.target(arc); |
| 373 | int right_tree = _tree_set->find(right); |
| 374 | |
| 375 | alternatePath(right, right_tree); |
| 376 | destroyTree(right_tree); |
| 377 | _matching->set(right, _bpgraph.oppositeArc(arc)); |
| 378 | } |
| 379 | |
| 380 | void extendOnArc(const Arc& arc) { |
| 381 | Node base = _bpgraph.target(arc); |
| 382 | int tree = _tree_set->find(base); |
| 383 | |
| 384 | Node odd = _bpgraph.source(arc); |
| 385 | _tree_set->insert(odd, tree); |
| 386 | _status->set(odd, ODD); |
| 387 | matchedToOdd(odd, tree); |
| 388 | _pred->set(odd, arc); |
| 389 | |
| 390 | Node even = _bpgraph.target((*_matching)[odd]); |
| 391 | _tree_set->insert(even, tree); |
| 392 | _status->set(even, EVEN); |
| 393 | matchedToEven(even, tree); |
| 394 | } |
| 395 | |
| 396 | public: |
| 397 | |
| 398 | /// \brief Constructor |
| 399 | /// |
| 400 | /// Constructor. |
| 401 | MaxWeightedBpMatching(const BpGraph& bpgraph, const WeightMap& weight) |
| 402 | : _bpgraph(bpgraph), _weight(weight), _matching(0), |
| 403 | _node_potential(0), _node_num(0), |
| 404 | _status(0), _pred(0), |
| 405 | _tree_set_index(0), _tree_set(0), |
| 406 | |
| 407 | _delta1_index(0), _delta1(0), |
| 408 | _delta2_index(0), _delta2(0), |
| 409 | _delta3_index(0), _delta3(0), |
| 410 | |
| 411 | _delta_sum(), _unmatched(0) |
| 412 | {} |
| 413 | |
| 414 | ~MaxWeightedBpMatching() { |
| 415 | destroyStructures(); |
| 416 | } |
| 417 | |
| 418 | /// \name Execution Control |
| 419 | /// The simplest way to execute the algorithm is to use the |
| 420 | /// \ref run() member function. |
| 421 | |
| 422 | ///@{ |
| 423 | |
| 424 | /// \brief Initialize the algorithm |
| 425 | /// |
| 426 | /// This function initializes the algorithm. |
| 427 | void init() { |
| 428 | createStructures(); |
| 429 | |
| 430 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 431 | (*_delta1_index)[n] = _delta1->PRE_HEAP; |
| 432 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| 433 | } |
| 434 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| 435 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 436 | } |
| 437 | |
| 438 | _delta1->clear(); |
| 439 | _delta2->clear(); |
| 440 | _delta3->clear(); |
| 441 | _tree_set->clear(); |
| 442 | |
| 443 | _unmatched = _node_num; |
| 444 | |
| 445 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 446 | Value max = 0; |
| 447 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| 448 | if ((dualScale * _weight[a]) / 2 > max) { |
| 449 | max = (dualScale * _weight[a]) / 2; |
| 450 | } |
| 451 | } |
| 452 | _node_potential->set(n, max); |
| 453 | _delta1->push(n, max); |
| 454 | |
| 455 | _tree_set->insert(n); |
| 456 | |
| 457 | _matching->set(n, INVALID); |
| 458 | _status->set(n, EVEN); |
| 459 | } |
| 460 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| 461 | _delta3->push(e, ((*_node_potential)[_bpgraph.u(e)] + |
| 462 | (*_node_potential)[_bpgraph.v(e)] - |
| 463 | dualScale * _weight[e]) / 2); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | /// \brief Initialize the algorithm |
| 468 | /// |
| 469 | /// This function initializes the algorithm. |
| 470 | void redRootInit() { |
| 471 | createStructures(); |
| 472 | |
| 473 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 474 | (*_delta1_index)[n] = _delta1->PRE_HEAP; |
| 475 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| 476 | } |
| 477 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| 478 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 479 | } |
| 480 | |
| 481 | _delta1->clear(); |
| 482 | _delta2->clear(); |
| 483 | _delta3->clear(); |
| 484 | _tree_set->clear(); |
| 485 | |
| 486 | _unmatched = 0; |
| 487 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 488 | Value max = 0; |
| 489 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| 490 | if ((dualScale * _weight[a]) > max) { |
| 491 | max = dualScale * _weight[a]; |
| 492 | } |
| 493 | } |
| 494 | _node_potential->set(n, max); |
| 495 | _delta1->push(n, max); |
| 496 | |
| 497 | _tree_set->insert(n); |
| 498 | |
| 499 | _matching->set(n, INVALID); |
| 500 | _status->set(n, EVEN); |
| 501 | |
| 502 | ++_unmatched; |
| 503 | } |
| 504 | for (BlueNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 505 | _matching->set(n, INVALID); |
| 506 | _status->set(n, MATCHED); |
| 507 | |
| 508 | Arc min = INVALID; |
| 509 | Value minrw = std::numeric_limits<Value>::max(); |
| 510 | for (InArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| 511 | Node v = _bpgraph.source(a); |
| 512 | Value rw = (*_node_potential)[n] + (*_node_potential)[v] - |
| 513 | dualScale * _weight[a]; |
| 514 | |
| 515 | if (minrw > rw) { |
| 516 | min = _bpgraph.oppositeArc(a); |
| 517 | minrw = rw; |
| 518 | } |
| 519 | } |
| 520 | if (min != INVALID) { |
| 521 | _pred->set(n, min); |
| 522 | _delta2->push(n, minrw); |
| 523 | } else { |
| 524 | _pred->set(n, INVALID); |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | /// \brief Initialize the algorithm |
| 530 | /// |
| 531 | /// This function initializes the algorithm. |
| 532 | void blueRootInit() { |
| 533 | createStructures(); |
| 534 | |
| 535 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 536 | (*_delta1_index)[n] = _delta1->PRE_HEAP; |
| 537 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| 538 | } |
| 539 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| 540 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 541 | } |
| 542 | |
| 543 | _delta1->clear(); |
| 544 | _delta2->clear(); |
| 545 | _delta3->clear(); |
| 546 | _tree_set->clear(); |
| 547 | |
| 548 | _unmatched = 0; |
| 549 | for (BlueNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 550 | Value max = 0; |
| 551 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| 552 | if ((dualScale * _weight[a]) > max) { |
| 553 | max = dualScale * _weight[a]; |
| 554 | } |
| 555 | } |
| 556 | _node_potential->set(n, max); |
| 557 | _delta1->push(n, max); |
| 558 | |
| 559 | _tree_set->insert(n); |
| 560 | |
| 561 | _matching->set(n, INVALID); |
| 562 | _status->set(n, EVEN); |
| 563 | |
| 564 | ++_unmatched; |
| 565 | } |
| 566 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 567 | _matching->set(n, INVALID); |
| 568 | _status->set(n, MATCHED); |
| 569 | |
| 570 | Arc min = INVALID; |
| 571 | Value minrw = std::numeric_limits<Value>::max(); |
| 572 | for (InArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| 573 | Node v = _bpgraph.source(a); |
| 574 | Value rw = (*_node_potential)[n] + (*_node_potential)[v] - |
| 575 | dualScale * _weight[a]; |
| 576 | |
| 577 | if (minrw > rw) { |
| 578 | min = _bpgraph.oppositeArc(a); |
| 579 | minrw = rw; |
| 580 | } |
| 581 | } |
| 582 | if (min != INVALID) { |
| 583 | _pred->set(n, min); |
| 584 | _delta2->push(n, minrw); |
| 585 | } else { |
| 586 | _pred->set(n, INVALID); |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | /// \brief Start the algorithm |
| 592 | /// |
| 593 | /// This function starts the algorithm. |
| 594 | /// |
| 595 | /// \pre \ref init() must be called before using this function. |
| 596 | void start() { |
| 597 | enum OpType { |
| 598 | D1, D2, D3 |
| 599 | }; |
| 600 | |
| 601 | while (_unmatched > 0) { |
| 602 | Value d1 = !_delta1->empty() ? |
| 603 | _delta1->prio() : std::numeric_limits<Value>::max(); |
| 604 | |
| 605 | Value d2 = !_delta2->empty() ? |
| 606 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| 607 | |
| 608 | Value d3 = !_delta3->empty() ? |
| 609 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| 610 | |
| 611 | _delta_sum = d3; OpType ot = D3; |
| 612 | if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
| 613 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
| 614 | |
| 615 | switch (ot) { |
| 616 | case D1: |
| 617 | { |
| 618 | Node n = _delta1->top(); |
| 619 | unmatchNode(n); |
| 620 | --_unmatched; |
| 621 | } |
| 622 | break; |
| 623 | case D2: |
| 624 | { |
| 625 | Node n = _delta2->top(); |
| 626 | Arc a = (*_pred)[n]; |
| 627 | if ((*_matching)[n] == INVALID) { |
| 628 | augmentOnArc(a); |
| 629 | --_unmatched; |
| 630 | } else { |
| 631 | extendOnArc(a); |
| 632 | } |
| 633 | } |
| 634 | break; |
| 635 | case D3: |
| 636 | { |
| 637 | Edge e = _delta3->top(); |
| 638 | augmentOnEdge(e); |
| 639 | _unmatched -= 2; |
| 640 | } |
| 641 | break; |
| 642 | } |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /// \brief Run the algorithm. |
| 647 | /// |
| 648 | /// This method runs the \c %MaxWeightedBpMatching algorithm. |
| 649 | /// |
| 650 | /// \note mwbpm.run() is just a shortcut of the following code. |
| 651 | /// \code |
| 652 | /// mwbpm.init(); |
| 653 | /// mwbpm.start(); |
| 654 | /// \endcode |
| 655 | void run() { |
| 656 | init(); |
| 657 | start(); |
| 658 | } |
| 659 | |
| 660 | /// @} |
| 661 | |
| 662 | /// \name Primal Solution |
| 663 | /// Functions to get the primal solution, i.e. the maximum weighted |
| 664 | /// bipartite matching.\n |
| 665 | /// Either \ref run() or \ref start() function should be called before |
| 666 | /// using them. |
| 667 | |
| 668 | /// @{ |
| 669 | |
| 670 | /// \brief Return the weight of the matching. |
| 671 | /// |
| 672 | /// This function returns the weight of the found matching. |
| 673 | /// |
| 674 | /// \pre Either run() or start() must be called before using this function. |
| 675 | Value matchingWeight() const { |
| 676 | Value sum = 0; |
| 677 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 678 | if ((*_matching)[n] != INVALID) { |
| 679 | sum += _weight[(*_matching)[n]]; |
| 680 | } |
| 681 | } |
| 682 | return sum; |
| 683 | } |
| 684 | |
| 685 | /// \brief Return the size (cardinality) of the matching. |
| 686 | /// |
| 687 | /// This function returns the size (cardinality) of the found matching. |
| 688 | /// |
| 689 | /// \pre Either run() or start() must be called before using this function. |
| 690 | int matchingSize() const { |
| 691 | int num = 0; |
| 692 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 693 | if ((*_matching)[n] != INVALID) { |
| 694 | ++num; |
| 695 | } |
| 696 | } |
| 697 | return num; |
| 698 | } |
| 699 | |
| 700 | /// \brief Return \c true if the given edge is in the matching. |
| 701 | /// |
| 702 | /// This function returns \c true if the given edge is in the found |
| 703 | /// matching. |
| 704 | /// |
| 705 | /// \pre Either run() or start() must be called before using this function. |
| 706 | bool matching(const Edge& edge) const { |
| 707 | return edge == (*_matching)[_bpgraph.u(edge)]; |
| 708 | } |
| 709 | |
| 710 | /// \brief Return the matching arc (or edge) incident to the given node. |
| 711 | /// |
| 712 | /// This function returns the matching arc (or edge) incident to the |
| 713 | /// given node in the found matching or \c INVALID if the node is |
| 714 | /// not covered by the matching. |
| 715 | /// |
| 716 | /// \pre Either run() or start() must be called before using this function. |
| 717 | Arc matching(const Node& node) const { |
| 718 | return (*_matching)[node]; |
| 719 | } |
| 720 | |
| 721 | /// \brief Return the mate of the given node. |
| 722 | /// |
| 723 | /// This function returns the mate of the given node in the found |
| 724 | /// matching or \c INVALID if the node is not covered by the matching. |
| 725 | /// |
| 726 | /// \pre Either run() or start() must be called before using this function. |
| 727 | Node mate(const Node& node) const { |
| 728 | return (*_matching)[node] != INVALID ? |
| 729 | _bpgraph.target((*_matching)[node]) : INVALID; |
| 730 | } |
| 731 | |
| 732 | /// @} |
| 733 | |
| 734 | /// \name Dual Solution |
| 735 | /// Functions to get the dual solution.\n |
| 736 | /// Either \ref run() or \ref start() function should be called before |
| 737 | /// using them. |
| 738 | |
| 739 | /// @{ |
| 740 | |
| 741 | /// \brief Return the value of the dual solution. |
| 742 | /// |
| 743 | /// This function returns the value of the dual solution. |
| 744 | /// It should be equal to the primal value scaled by \ref dualScale |
| 745 | /// "dual scale". |
| 746 | /// |
| 747 | /// \pre Either run() or start() must be called before using this function. |
| 748 | Value dualValue() const { |
| 749 | Value sum = 0; |
| 750 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 751 | sum += nodeValue(n); |
| 752 | } |
| 753 | return sum; |
| 754 | } |
| 755 | |
| 756 | /// \brief Return the dual value (potential) of the given node. |
| 757 | /// |
| 758 | /// This function returns the dual value (potential) of the given node. |
| 759 | /// |
| 760 | /// \pre Either run() or start() must be called before using this function. |
| 761 | Value nodeValue(const Node& n) const { |
| 762 | return (*_node_potential)[n]; |
| 763 | } |
| 764 | |
| 765 | /// @} |
| 766 | }; |
| 767 | |
| 768 | /// \ingroup matching |
| 769 | /// |
| 770 | /// \brief Weighted perfect matching in bipartite graphs |
| 771 | /// |
| 772 | /// This class provides an efficient implementation of multiple search tree |
| 773 | /// augmenting path matching algorithm. The implementation is based on |
| 774 | /// extensive use of priority queues and provides \f$O(nm\log n)\f$ time |
| 775 | /// complexity. |
| 776 | /// |
| 777 | /// The maximum weighted matching problem is to find a subset of the |
| 778 | /// edges in a bipartite graph with maximum overall weight for which |
| 779 | /// each node has exactly one incident edge. |
| 780 | /// It can be formulated with the following linear program. |
| 781 | /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
| 782 | /// \f[x_e \ge 0 \quad \forall e\in E\f] |
| 783 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| 784 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 785 | /// \f$X\f$. |
| 786 | /// |
| 787 | /// The algorithm calculates an optimal matching and a proof of the |
| 788 | /// optimality. The solution of the dual problem can be used to check |
| 789 | /// the result of the algorithm. The dual linear problem is the |
| 790 | /// following. |
| 791 | /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
| 792 | /// \f[\min \sum_{u \in V}y_u \f] |
| 793 | /// \tparam BPGR The bipartite graph type the algorithm runs on. |
| 794 | /// \tparam WM The type edge weight map. The default type is |
| 795 | /// \ref concepts::BpGraph::EdgeMap "BPGR::EdgeMap<int>". |
| 796 | #ifdef DOXYGEN |
| 797 | template <typename BPGR, typename WM> |
| 798 | #else |
| 799 | template <typename BPGR, |
| 800 | typename WM = typename BPGR::template EdgeMap<int> > |
| 801 | #endif |
| 802 | class MaxWeightedPerfectBpMatching { |
| 803 | public: |
| 804 | |
| 805 | /// The graph type of the algorithm |
| 806 | typedef BPGR BpGraph; |
| 807 | /// The type of the edge weight map |
| 808 | typedef WM WeightMap; |
| 809 | /// The value type of the edge weights |
| 810 | typedef typename WeightMap::Value Value; |
| 811 | |
| 812 | /// The type of the matching map |
| 813 | typedef typename BpGraph::template NodeMap<typename BpGraph::Arc> |
| 814 | MatchingMap; |
| 815 | |
| 816 | /// \brief Scaling factor for dual solution |
| 817 | /// |
| 818 | /// Scaling factor for dual solution. It is equal to 4 or 1 |
| 819 | /// according to the value type. |
| 820 | static const int dualScale = |
| 821 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 822 | |
| 823 | private: |
| 824 | |
| 825 | TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph); |
| 826 | |
| 827 | typedef typename BpGraph::template NodeMap<Value> NodePotential; |
| 828 | |
| 829 | const BpGraph& _bpgraph; |
| 830 | const WeightMap& _weight; |
| 831 | |
| 832 | MatchingMap* _matching; |
| 833 | |
| 834 | NodePotential* _node_potential; |
| 835 | |
| 836 | int _node_num; |
| 837 | |
| 838 | enum Status { |
| 839 | EVEN = -1, MATCHED = 0, ODD = 1 |
| 840 | }; |
| 841 | |
| 842 | typedef typename BpGraph::template NodeMap<Status> StatusMap; |
| 843 | StatusMap* _status; |
| 844 | |
| 845 | typedef typename BpGraph::template NodeMap<Arc> PredMap; |
| 846 | PredMap* _pred; |
| 847 | |
| 848 | typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| 849 | IntNodeMap *_tree_set_index; |
| 850 | TreeSet *_tree_set; |
| 851 | |
| 852 | IntNodeMap *_delta2_index; |
| 853 | BinHeap<Value, IntNodeMap> *_delta2; |
| 854 | |
| 855 | IntEdgeMap *_delta3_index; |
| 856 | BinHeap<Value, IntEdgeMap> *_delta3; |
| 857 | |
| 858 | Value _delta_sum; |
| 859 | int _unmatched; |
| 860 | |
| 861 | void createStructures() { |
| 862 | _node_num = countNodes(_bpgraph); |
| 863 | |
| 864 | if (!_matching) { |
| 865 | _matching = new MatchingMap(_bpgraph); |
| 866 | } |
| 867 | |
| 868 | if (!_node_potential) { |
| 869 | _node_potential = new NodePotential(_bpgraph); |
| 870 | } |
| 871 | |
| 872 | if (!_status) { |
| 873 | _status = new StatusMap(_bpgraph); |
| 874 | } |
| 875 | |
| 876 | if (!_pred) { |
| 877 | _pred = new PredMap(_bpgraph); |
| 878 | } |
| 879 | |
| 880 | if (!_tree_set) { |
| 881 | _tree_set_index = new IntNodeMap(_bpgraph); |
| 882 | _tree_set = new TreeSet(*_tree_set_index); |
| 883 | } |
| 884 | |
| 885 | if (!_delta2) { |
| 886 | _delta2_index = new IntNodeMap(_bpgraph); |
| 887 | _delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
| 888 | } |
| 889 | |
| 890 | if (!_delta3) { |
| 891 | _delta3_index = new IntEdgeMap(_bpgraph); |
| 892 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | void destroyStructures() { |
| 897 | if (_matching) { |
| 898 | delete _matching; |
| 899 | } |
| 900 | if (_node_potential) { |
| 901 | delete _node_potential; |
| 902 | } |
| 903 | if (_status) { |
| 904 | delete _status; |
| 905 | } |
| 906 | if (_pred) { |
| 907 | delete _pred; |
| 908 | } |
| 909 | if (_tree_set) { |
| 910 | delete _tree_set_index; |
| 911 | delete _tree_set; |
| 912 | } |
| 913 | if (_delta2) { |
| 914 | delete _delta2_index; |
| 915 | delete _delta2; |
| 916 | } |
| 917 | if (_delta3) { |
| 918 | delete _delta3_index; |
| 919 | delete _delta3; |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | void matchedToEven(Node node, int tree) { |
| 924 | _tree_set->insert(node, tree); |
| 925 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| 926 | |
| 927 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| 928 | _delta2->erase(node); |
| 929 | } |
| 930 | |
| 931 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| 932 | Node v = _bpgraph.source(a); |
| 933 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| 934 | dualScale * _weight[a]; |
| 935 | if ((*_status)[v] == EVEN) { |
| 936 | _delta3->push(a, rw / 2); |
| 937 | } else if ((*_status)[v] == MATCHED) { |
| 938 | if (_delta2->state(v) != _delta2->IN_HEAP) { |
| 939 | _pred->set(v, a); |
| 940 | _delta2->push(v, rw); |
| 941 | } else if ((*_delta2)[v] > rw) { |
| 942 | _pred->set(v, a); |
| 943 | _delta2->decrease(v, rw); |
| 944 | } |
| 945 | } |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | void matchedToOdd(Node node, int tree) { |
| 950 | _tree_set->insert(node, tree); |
| 951 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| 952 | |
| 953 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| 954 | _delta2->erase(node); |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | void evenToMatched(Node node, int tree) { |
| 959 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| 960 | Arc min = INVALID; |
| 961 | Value minrw = std::numeric_limits<Value>::max(); |
| 962 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| 963 | Node v = _bpgraph.source(a); |
| 964 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| 965 | dualScale * _weight[a]; |
| 966 | |
| 967 | if ((*_status)[v] == EVEN) { |
| 968 | _delta3->erase(a); |
| 969 | if (minrw > rw) { |
| 970 | min = _bpgraph.oppositeArc(a); |
| 971 | minrw = rw; |
| 972 | } |
| 973 | } else if ((*_status)[v] == MATCHED) { |
| 974 | if ((*_pred)[v] == a) { |
| 975 | Arc mina = INVALID; |
| 976 | Value minrwa = std::numeric_limits<Value>::max(); |
| 977 | for (OutArcIt aa(_bpgraph, v); aa != INVALID; ++aa) { |
| 978 | Node va = _bpgraph.target(aa); |
| 979 | if ((*_status)[va] != EVEN || |
| 980 | _tree_set->find(va) == tree) continue; |
| 981 | Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
| 982 | dualScale * _weight[aa]; |
| 983 | if (minrwa > rwa) { |
| 984 | minrwa = rwa; |
| 985 | mina = aa; |
| 986 | } |
| 987 | } |
| 988 | if (mina != INVALID) { |
| 989 | _pred->set(v, mina); |
| 990 | _delta2->increase(v, minrwa); |
| 991 | } else { |
| 992 | _pred->set(v, INVALID); |
| 993 | _delta2->erase(v); |
| 994 | } |
| 995 | } |
| 996 | } |
| 997 | } |
| 998 | if (min != INVALID) { |
| 999 | _pred->set(node, min); |
| 1000 | _delta2->push(node, minrw); |
| 1001 | } else { |
| 1002 | _pred->set(node, INVALID); |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | void oddToMatched(Node node) { |
| 1007 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| 1008 | Arc min = INVALID; |
| 1009 | Value minrw = std::numeric_limits<Value>::max(); |
| 1010 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| 1011 | Node v = _bpgraph.source(a); |
| 1012 | if ((*_status)[v] != EVEN) continue; |
| 1013 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| 1014 | dualScale * _weight[a]; |
| 1015 | |
| 1016 | if (minrw > rw) { |
| 1017 | min = _bpgraph.oppositeArc(a); |
| 1018 | minrw = rw; |
| 1019 | } |
| 1020 | } |
| 1021 | if (min != INVALID) { |
| 1022 | _pred->set(node, min); |
| 1023 | _delta2->push(node, minrw); |
| 1024 | } else { |
| 1025 | _pred->set(node, INVALID); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | void alternatePath(Node even, int tree) { |
| 1030 | Node odd; |
| 1031 | |
| 1032 | _status->set(even, MATCHED); |
| 1033 | evenToMatched(even, tree); |
| 1034 | |
| 1035 | Arc prev = (*_matching)[even]; |
| 1036 | while (prev != INVALID) { |
| 1037 | odd = _bpgraph.target(prev); |
| 1038 | even = _bpgraph.target((*_pred)[odd]); |
| 1039 | _matching->set(odd, (*_pred)[odd]); |
| 1040 | _status->set(odd, MATCHED); |
| 1041 | oddToMatched(odd); |
| 1042 | |
| 1043 | prev = (*_matching)[even]; |
| 1044 | _status->set(even, MATCHED); |
| 1045 | _matching->set(even, _bpgraph.oppositeArc((*_matching)[odd])); |
| 1046 | evenToMatched(even, tree); |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | void destroyTree(int tree) { |
| 1051 | for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
| 1052 | if ((*_status)[n] == EVEN) { |
| 1053 | _status->set(n, MATCHED); |
| 1054 | evenToMatched(n, tree); |
| 1055 | } else if ((*_status)[n] == ODD) { |
| 1056 | _status->set(n, MATCHED); |
| 1057 | oddToMatched(n); |
| 1058 | } |
| 1059 | } |
| 1060 | _tree_set->eraseClass(tree); |
| 1061 | } |
| 1062 | |
| 1063 | void unmatchNode(const Node& node) { |
| 1064 | int tree = _tree_set->find(node); |
| 1065 | |
| 1066 | alternatePath(node, tree); |
| 1067 | destroyTree(tree); |
| 1068 | |
| 1069 | _matching->set(node, INVALID); |
| 1070 | } |
| 1071 | |
| 1072 | void augmentOnEdge(const Edge& edge) { |
| 1073 | Node left = _bpgraph.u(edge); |
| 1074 | int left_tree = _tree_set->find(left); |
| 1075 | |
| 1076 | alternatePath(left, left_tree); |
| 1077 | destroyTree(left_tree); |
| 1078 | _matching->set(left, _bpgraph.direct(edge, true)); |
| 1079 | |
| 1080 | Node right = _bpgraph.v(edge); |
| 1081 | int right_tree = _tree_set->find(right); |
| 1082 | |
| 1083 | alternatePath(right, right_tree); |
| 1084 | destroyTree(right_tree); |
| 1085 | _matching->set(right, _bpgraph.direct(edge, false)); |
| 1086 | } |
| 1087 | |
| 1088 | void augmentOnArc(const Arc& arc) { |
| 1089 | Node left = _bpgraph.source(arc); |
| 1090 | _status->set(left, MATCHED); |
| 1091 | _matching->set(left, arc); |
| 1092 | _pred->set(left, arc); |
| 1093 | |
| 1094 | Node right = _bpgraph.target(arc); |
| 1095 | int right_tree = _tree_set->find(right); |
| 1096 | |
| 1097 | alternatePath(right, right_tree); |
| 1098 | destroyTree(right_tree); |
| 1099 | _matching->set(right, _bpgraph.oppositeArc(arc)); |
| 1100 | } |
| 1101 | |
| 1102 | void extendOnArc(const Arc& arc) { |
| 1103 | Node base = _bpgraph.target(arc); |
| 1104 | int tree = _tree_set->find(base); |
| 1105 | |
| 1106 | Node odd = _bpgraph.source(arc); |
| 1107 | _tree_set->insert(odd, tree); |
| 1108 | _status->set(odd, ODD); |
| 1109 | matchedToOdd(odd, tree); |
| 1110 | _pred->set(odd, arc); |
| 1111 | |
| 1112 | Node even = _bpgraph.target((*_matching)[odd]); |
| 1113 | _tree_set->insert(even, tree); |
| 1114 | _status->set(even, EVEN); |
| 1115 | matchedToEven(even, tree); |
| 1116 | } |
| 1117 | |
| 1118 | public: |
| 1119 | |
| 1120 | /// \brief Constructor |
| 1121 | /// |
| 1122 | /// Constructor. |
| 1123 | MaxWeightedPerfectBpMatching(const BpGraph& bpgraph, const WeightMap& weight) |
| 1124 | : _bpgraph(bpgraph), _weight(weight), _matching(0), |
| 1125 | _node_potential(0), _node_num(0), |
| 1126 | _status(0), _pred(0), |
| 1127 | _tree_set_index(0), _tree_set(0), |
| 1128 | |
| 1129 | _delta2_index(0), _delta2(0), |
| 1130 | _delta3_index(0), _delta3(0), |
| 1131 | |
| 1132 | _delta_sum(), _unmatched(0) |
| 1133 | {} |
| 1134 | |
| 1135 | ~MaxWeightedPerfectBpMatching() { |
| 1136 | destroyStructures(); |
| 1137 | } |
| 1138 | |
| 1139 | /// \name Execution Control |
| 1140 | /// The simplest way to execute the algorithm is to use the |
| 1141 | /// \ref run() member function. |
| 1142 | |
| 1143 | ///@{ |
| 1144 | |
| 1145 | /// \brief Initialize the algorithm |
| 1146 | /// |
| 1147 | /// This function initializes the algorithm. |
| 1148 | /// |
| 1149 | /// \return If it is false, then the graph does not have a perfect matching. |
| 1150 | bool init() { |
| 1151 | createStructures(); |
| 1152 | |
| 1153 | if (countRedNodes(_bpgraph) != countBlueNodes(_bpgraph)) { |
| 1154 | return false; |
| 1155 | } |
| 1156 | |
| 1157 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 1158 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| 1159 | } |
| 1160 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| 1161 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 1162 | } |
| 1163 | |
| 1164 | _delta2->clear(); |
| 1165 | _delta3->clear(); |
| 1166 | _tree_set->clear(); |
| 1167 | |
| 1168 | _unmatched = _node_num; |
| 1169 | |
| 1170 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 1171 | Value max = - std::numeric_limits<Value>::max(); |
| 1172 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| 1173 | if ((dualScale * _weight[a]) / 2 > max) { |
| 1174 | max = (dualScale * _weight[a]) / 2; |
| 1175 | } |
| 1176 | } |
| 1177 | if (max == - std::numeric_limits<Value>::max()) { |
| 1178 | return false; |
| 1179 | } |
| 1180 | _node_potential->set(n, max); |
| 1181 | |
| 1182 | _tree_set->insert(n); |
| 1183 | |
| 1184 | _matching->set(n, INVALID); |
| 1185 | _status->set(n, EVEN); |
| 1186 | } |
| 1187 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| 1188 | _delta3->push(e, ((*_node_potential)[_bpgraph.u(e)] + |
| 1189 | (*_node_potential)[_bpgraph.v(e)] - |
| 1190 | dualScale * _weight[e]) / 2); |
| 1191 | } |
| 1192 | return true; |
| 1193 | } |
| 1194 | |
| 1195 | /// \brief Start the algorithm |
| 1196 | /// |
| 1197 | /// This function starts the algorithm. |
| 1198 | /// |
| 1199 | /// \pre \ref init() must be called before using this function. |
| 1200 | /// |
| 1201 | /// \return True when a perfect matching is found. |
| 1202 | bool start() { |
| 1203 | enum OpType { |
| 1204 | D2, D3 |
| 1205 | }; |
| 1206 | |
| 1207 | while (_unmatched > 0) { |
| 1208 | Value d2 = !_delta2->empty() ? |
| 1209 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| 1210 | |
| 1211 | Value d3 = !_delta3->empty() ? |
| 1212 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| 1213 | |
| 1214 | _delta_sum = d3; OpType ot = D3; |
| 1215 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
| 1216 | |
| 1217 | if (_delta_sum == std::numeric_limits<Value>::max()) { |
| 1218 | return false; |
| 1219 | } |
| 1220 | |
| 1221 | switch (ot) { |
| 1222 | case D2: |
| 1223 | { |
| 1224 | Node n = _delta2->top(); |
| 1225 | Arc a = (*_pred)[n]; |
| 1226 | if ((*_matching)[n] == INVALID) { |
| 1227 | augmentOnArc(a); |
| 1228 | --_unmatched; |
| 1229 | } else { |
| 1230 | extendOnArc(a); |
| 1231 | } |
| 1232 | } |
| 1233 | break; |
| 1234 | case D3: |
| 1235 | { |
| 1236 | Edge e = _delta3->top(); |
| 1237 | augmentOnEdge(e); |
| 1238 | _unmatched -= 2; |
| 1239 | } |
| 1240 | break; |
| 1241 | } |
| 1242 | } |
| 1243 | return true; |
| 1244 | } |
| 1245 | |
| 1246 | /// \brief Run the algorithm. |
| 1247 | /// |
| 1248 | /// This method runs the \c %MaxWeightedPerfectBpMatching algorithm. |
| 1249 | /// |
| 1250 | /// \note mwpbpm.run() is just a shortcut of the following code. |
| 1251 | /// \code |
| 1252 | /// return mwpbpm.init() && mwpbpm.start(); |
| 1253 | /// \endcode |
| 1254 | /// |
| 1255 | /// \return True when a perfect matching is found. |
| 1256 | bool run() { |
| 1257 | return init() && start(); |
| 1258 | } |
| 1259 | |
| 1260 | /// @} |
| 1261 | |
| 1262 | /// \name Primal Solution |
| 1263 | /// Functions to get the primal solution, i.e. the maximum weighted |
| 1264 | /// bipartite matching.\n |
| 1265 | /// Either \ref run() or \ref start() function should be called before |
| 1266 | /// using them and a matching should be found. |
| 1267 | |
| 1268 | /// @{ |
| 1269 | |
| 1270 | /// \brief Return the weight of the matching. |
| 1271 | /// |
| 1272 | /// This function returns the weight of the found matching. |
| 1273 | /// |
| 1274 | /// \pre A perfect matching has been found. |
| 1275 | Value matchingWeight() const { |
| 1276 | Value sum = 0; |
| 1277 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 1278 | sum += _weight[(*_matching)[n]]; |
| 1279 | } |
| 1280 | return sum; |
| 1281 | } |
| 1282 | |
| 1283 | /// \brief Return the size (cardinality) of the matching. |
| 1284 | /// |
| 1285 | /// This function returns the size (cardinality) of the found matching. |
| 1286 | /// |
| 1287 | /// \pre A perfect matching has been found. |
| 1288 | int matchingSize() const { |
| 1289 | int num = 0; |
| 1290 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| 1291 | ++num; |
| 1292 | } |
| 1293 | return num; |
| 1294 | } |
| 1295 | |
| 1296 | /// \brief Return \c true if the given edge is in the matching. |
| 1297 | /// |
| 1298 | /// This function returns \c true if the given edge is in the found |
| 1299 | /// matching. |
| 1300 | /// |
| 1301 | /// \pre A perfect matching has been found. |
| 1302 | bool matching(const Edge& edge) const { |
| 1303 | return edge == (*_matching)[_bpgraph.u(edge)]; |
| 1304 | } |
| 1305 | |
| 1306 | /// \brief Return the matching arc (or edge) incident to the given node. |
| 1307 | /// |
| 1308 | /// This function returns the matching arc (or edge) incident to the |
| 1309 | /// given node in the found matching or \c INVALID if the node is |
| 1310 | /// not covered by the matching. |
| 1311 | /// |
| 1312 | /// \pre A perfect matching has been found. |
| 1313 | Arc matching(const Node& node) const { |
| 1314 | return (*_matching)[node]; |
| 1315 | } |
| 1316 | |
| 1317 | /// \brief Return the mate of the given node. |
| 1318 | /// |
| 1319 | /// This function returns the mate of the given node in the found |
| 1320 | /// matching or \c INVALID if the node is not covered by the matching. |
| 1321 | /// |
| 1322 | /// \pre Either run() or start() must be called before using this function. |
| 1323 | Node mate(const Node& node) const { |
| 1324 | return (*_matching)[node] != INVALID ? |
| 1325 | _bpgraph.target((*_matching)[node]) : INVALID; |
| 1326 | } |
| 1327 | |
| 1328 | /// @} |
| 1329 | |
| 1330 | /// \name Dual Solution |
| 1331 | /// Functions to get the dual solution.\n |
| 1332 | /// Either \ref run() or \ref start() function should be called before |
| 1333 | /// using them and a matching should be found. |
| 1334 | |
| 1335 | /// @{ |
| 1336 | |
| 1337 | /// \brief Return the value of the dual solution. |
| 1338 | /// |
| 1339 | /// This function returns the value of the dual solution. |
| 1340 | /// It should be equal to the primal value scaled by \ref dualScale |
| 1341 | /// "dual scale". |
| 1342 | /// |
| 1343 | /// \pre A perfect matching has been found. |
| 1344 | Value dualValue() const { |
| 1345 | Value sum = 0; |
| 1346 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| 1347 | sum += nodeValue(n); |
| 1348 | } |
| 1349 | return sum; |
| 1350 | } |
| 1351 | |
| 1352 | /// \brief Return the dual value (potential) of the given node. |
| 1353 | /// |
| 1354 | /// This function returns the dual value (potential) of the given node. |
| 1355 | /// |
| 1356 | /// \pre A perfect matching has been found. |
| 1357 | Value nodeValue(const Node& n) const { |
| 1358 | return (*_node_potential)[n]; |
| 1359 | } |
| 1360 | |
| 1361 | /// @} |
| 1362 | }; |
| 1363 | |
| 1364 | } //END OF NAMESPACE LEMON |
| 1365 | |
| 1366 | #endif //LEMON_BPMATCHING_H |