| | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2019 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_BPMATCHING_H |
| | 20 | #define LEMON_BPMATCHING_H |
| | 21 | |
| | 22 | #include <limits> |
| | 23 | |
| | 24 | #include <lemon/core.h> |
| | 25 | #include <lemon/unionfind.h> |
| | 26 | #include <lemon/bin_heap.h> |
| | 27 | #include <lemon/maps.h> |
| | 28 | |
| | 29 | ///\ingroup matching |
| | 30 | ///\file |
| | 31 | ///\brief Maximum matching algorithms in bipartite graphs. |
| | 32 | |
| | 33 | namespace lemon { |
| | 34 | |
| | 35 | /// \ingroup matching |
| | 36 | /// |
| | 37 | /// \brief Weighted matching in bipartite graphs |
| | 38 | /// |
| | 39 | /// This class provides an efficient implementation of multiple search tree |
| | 40 | /// augmenting path matching algorithm. The implementation is based on |
| | 41 | /// extensive use of priority queues and provides \f$O(nm\log n)\f$ time |
| | 42 | /// complexity. |
| | 43 | /// |
| | 44 | /// The maximum weighted matching problem is to find a subset of the |
| | 45 | /// edges in a bipartite graph with maximum overall weight for which |
| | 46 | /// each node has at most one incident edge. |
| | 47 | /// It can be formulated with the following linear program. |
| | 48 | /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
| | 49 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
| | 50 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| | 51 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| | 52 | /// \f$X\f$. |
| | 53 | /// |
| | 54 | /// The algorithm calculates an optimal matching and a proof of the |
| | 55 | /// optimality. The solution of the dual problem can be used to check |
| | 56 | /// the result of the algorithm. The dual linear problem is the |
| | 57 | /// following. |
| | 58 | /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
| | 59 | /// \f[y_u \ge 0 \quad \forall u \in V\f] |
| | 60 | /// \f[\min \sum_{u \in V}y_u \f] |
| | 61 | /// \tparam BPGR The bipartite graph type the algorithm runs on. |
| | 62 | /// \tparam WM The type edge weight map. The default type is |
| | 63 | /// \ref concepts::BpGraph::EdgeMap "BPGR::EdgeMap<int>". |
| | 64 | #ifdef DOXYGEN |
| | 65 | template <typename BPGR, typename WM> |
| | 66 | #else |
| | 67 | template <typename BPGR, |
| | 68 | typename WM = typename BPGR::template EdgeMap<int> > |
| | 69 | #endif |
| | 70 | class MaxWeightedBpMatching { |
| | 71 | public: |
| | 72 | |
| | 73 | /// The graph type of the algorithm |
| | 74 | typedef BPGR BpGraph; |
| | 75 | /// The type of the edge weight map |
| | 76 | typedef WM WeightMap; |
| | 77 | /// The value type of the edge weights |
| | 78 | typedef typename WeightMap::Value Value; |
| | 79 | |
| | 80 | /// The type of the matching map |
| | 81 | typedef typename BpGraph::template NodeMap<typename BpGraph::Arc> |
| | 82 | MatchingMap; |
| | 83 | |
| | 84 | /// \brief Scaling factor for dual solution |
| | 85 | /// |
| | 86 | /// Scaling factor for dual solution. It is equal to 4 or 1 |
| | 87 | /// according to the value type. |
| | 88 | static const int dualScale = |
| | 89 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| | 90 | |
| | 91 | private: |
| | 92 | |
| | 93 | TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph); |
| | 94 | |
| | 95 | typedef typename BpGraph::template NodeMap<Value> NodePotential; |
| | 96 | |
| | 97 | const BpGraph& _bpgraph; |
| | 98 | const WeightMap& _weight; |
| | 99 | |
| | 100 | MatchingMap* _matching; |
| | 101 | |
| | 102 | NodePotential* _node_potential; |
| | 103 | |
| | 104 | int _node_num; |
| | 105 | |
| | 106 | enum Status { |
| | 107 | EVEN = -1, MATCHED = 0, ODD = 1 |
| | 108 | }; |
| | 109 | |
| | 110 | typedef typename BpGraph::template NodeMap<Status> StatusMap; |
| | 111 | StatusMap* _status; |
| | 112 | |
| | 113 | typedef typename BpGraph::template NodeMap<Arc> PredMap; |
| | 114 | PredMap* _pred; |
| | 115 | |
| | 116 | typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| | 117 | IntNodeMap *_tree_set_index; |
| | 118 | TreeSet *_tree_set; |
| | 119 | |
| | 120 | IntNodeMap *_delta1_index; |
| | 121 | BinHeap<Value, IntNodeMap> *_delta1; |
| | 122 | |
| | 123 | IntNodeMap *_delta2_index; |
| | 124 | BinHeap<Value, IntNodeMap> *_delta2; |
| | 125 | |
| | 126 | IntEdgeMap *_delta3_index; |
| | 127 | BinHeap<Value, IntEdgeMap> *_delta3; |
| | 128 | |
| | 129 | Value _delta_sum; |
| | 130 | int _unmatched; |
| | 131 | |
| | 132 | void createStructures() { |
| | 133 | _node_num = countNodes(_bpgraph); |
| | 134 | |
| | 135 | if (!_matching) { |
| | 136 | _matching = new MatchingMap(_bpgraph); |
| | 137 | } |
| | 138 | |
| | 139 | if (!_node_potential) { |
| | 140 | _node_potential = new NodePotential(_bpgraph); |
| | 141 | } |
| | 142 | |
| | 143 | if (!_status) { |
| | 144 | _status = new StatusMap(_bpgraph); |
| | 145 | } |
| | 146 | |
| | 147 | if (!_pred) { |
| | 148 | _pred = new PredMap(_bpgraph); |
| | 149 | } |
| | 150 | |
| | 151 | if (!_tree_set) { |
| | 152 | _tree_set_index = new IntNodeMap(_bpgraph); |
| | 153 | _tree_set = new TreeSet(*_tree_set_index); |
| | 154 | } |
| | 155 | |
| | 156 | if (!_delta1) { |
| | 157 | _delta1_index = new IntNodeMap(_bpgraph); |
| | 158 | _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| | 159 | } |
| | 160 | |
| | 161 | if (!_delta2) { |
| | 162 | _delta2_index = new IntNodeMap(_bpgraph); |
| | 163 | _delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
| | 164 | } |
| | 165 | |
| | 166 | if (!_delta3) { |
| | 167 | _delta3_index = new IntEdgeMap(_bpgraph); |
| | 168 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| | 169 | } |
| | 170 | } |
| | 171 | |
| | 172 | void destroyStructures() { |
| | 173 | if (_matching) { |
| | 174 | delete _matching; |
| | 175 | } |
| | 176 | if (_node_potential) { |
| | 177 | delete _node_potential; |
| | 178 | } |
| | 179 | if (_status) { |
| | 180 | delete _status; |
| | 181 | } |
| | 182 | if (_pred) { |
| | 183 | delete _pred; |
| | 184 | } |
| | 185 | if (_tree_set) { |
| | 186 | delete _tree_set_index; |
| | 187 | delete _tree_set; |
| | 188 | } |
| | 189 | if (_delta2) { |
| | 190 | delete _delta2_index; |
| | 191 | delete _delta2; |
| | 192 | } |
| | 193 | if (_delta3) { |
| | 194 | delete _delta3_index; |
| | 195 | delete _delta3; |
| | 196 | } |
| | 197 | } |
| | 198 | |
| | 199 | void matchedToEven(Node node, int tree) { |
| | 200 | _tree_set->insert(node, tree); |
| | 201 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| | 202 | _delta1->push(node, (*_node_potential)[node]); |
| | 203 | |
| | 204 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| | 205 | _delta2->erase(node); |
| | 206 | } |
| | 207 | |
| | 208 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| | 209 | Node v = _bpgraph.source(a); |
| | 210 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| | 211 | dualScale * _weight[a]; |
| | 212 | if ((*_status)[v] == EVEN) { |
| | 213 | _delta3->push(a, rw / 2); |
| | 214 | } else if ((*_status)[v] == MATCHED) { |
| | 215 | if (_delta2->state(v) != _delta2->IN_HEAP) { |
| | 216 | _pred->set(v, a); |
| | 217 | _delta2->push(v, rw); |
| | 218 | } else if ((*_delta2)[v] > rw) { |
| | 219 | _pred->set(v, a); |
| | 220 | _delta2->decrease(v, rw); |
| | 221 | } |
| | 222 | } |
| | 223 | } |
| | 224 | } |
| | 225 | |
| | 226 | void matchedToOdd(Node node, int tree) { |
| | 227 | _tree_set->insert(node, tree); |
| | 228 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| | 229 | |
| | 230 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| | 231 | _delta2->erase(node); |
| | 232 | } |
| | 233 | } |
| | 234 | |
| | 235 | void evenToMatched(Node node, int tree) { |
| | 236 | _delta1->erase(node); |
| | 237 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| | 238 | Arc min = INVALID; |
| | 239 | Value minrw = std::numeric_limits<Value>::max(); |
| | 240 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| | 241 | Node v = _bpgraph.source(a); |
| | 242 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| | 243 | dualScale * _weight[a]; |
| | 244 | |
| | 245 | if ((*_status)[v] == EVEN) { |
| | 246 | _delta3->erase(a); |
| | 247 | if (minrw > rw) { |
| | 248 | min = _bpgraph.oppositeArc(a); |
| | 249 | minrw = rw; |
| | 250 | } |
| | 251 | } else if ((*_status)[v] == MATCHED) { |
| | 252 | if ((*_pred)[v] == a) { |
| | 253 | Arc mina = INVALID; |
| | 254 | Value minrwa = std::numeric_limits<Value>::max(); |
| | 255 | for (OutArcIt aa(_bpgraph, v); aa != INVALID; ++aa) { |
| | 256 | Node va = _bpgraph.target(aa); |
| | 257 | if ((*_status)[va] != EVEN || |
| | 258 | _tree_set->find(va) == tree) continue; |
| | 259 | Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
| | 260 | dualScale * _weight[aa]; |
| | 261 | if (minrwa > rwa) { |
| | 262 | minrwa = rwa; |
| | 263 | mina = aa; |
| | 264 | } |
| | 265 | } |
| | 266 | if (mina != INVALID) { |
| | 267 | _pred->set(v, mina); |
| | 268 | _delta2->increase(v, minrwa); |
| | 269 | } else { |
| | 270 | _pred->set(v, INVALID); |
| | 271 | _delta2->erase(v); |
| | 272 | } |
| | 273 | } |
| | 274 | } |
| | 275 | } |
| | 276 | if (min != INVALID) { |
| | 277 | _pred->set(node, min); |
| | 278 | _delta2->push(node, minrw); |
| | 279 | } else { |
| | 280 | _pred->set(node, INVALID); |
| | 281 | } |
| | 282 | } |
| | 283 | |
| | 284 | void oddToMatched(Node node) { |
| | 285 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| | 286 | Arc min = INVALID; |
| | 287 | Value minrw = std::numeric_limits<Value>::max(); |
| | 288 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| | 289 | Node v = _bpgraph.source(a); |
| | 290 | if ((*_status)[v] != EVEN) continue; |
| | 291 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| | 292 | dualScale * _weight[a]; |
| | 293 | |
| | 294 | if (minrw > rw) { |
| | 295 | min = _bpgraph.oppositeArc(a); |
| | 296 | minrw = rw; |
| | 297 | } |
| | 298 | } |
| | 299 | if (min != INVALID) { |
| | 300 | _pred->set(node, min); |
| | 301 | _delta2->push(node, minrw); |
| | 302 | } else { |
| | 303 | _pred->set(node, INVALID); |
| | 304 | } |
| | 305 | } |
| | 306 | |
| | 307 | void alternatePath(Node even, int tree) { |
| | 308 | Node odd; |
| | 309 | |
| | 310 | _status->set(even, MATCHED); |
| | 311 | evenToMatched(even, tree); |
| | 312 | |
| | 313 | Arc prev = (*_matching)[even]; |
| | 314 | while (prev != INVALID) { |
| | 315 | odd = _bpgraph.target(prev); |
| | 316 | even = _bpgraph.target((*_pred)[odd]); |
| | 317 | _matching->set(odd, (*_pred)[odd]); |
| | 318 | _status->set(odd, MATCHED); |
| | 319 | oddToMatched(odd); |
| | 320 | |
| | 321 | prev = (*_matching)[even]; |
| | 322 | _status->set(even, MATCHED); |
| | 323 | _matching->set(even, _bpgraph.oppositeArc((*_matching)[odd])); |
| | 324 | evenToMatched(even, tree); |
| | 325 | } |
| | 326 | } |
| | 327 | |
| | 328 | void destroyTree(int tree) { |
| | 329 | for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
| | 330 | if ((*_status)[n] == EVEN) { |
| | 331 | _status->set(n, MATCHED); |
| | 332 | evenToMatched(n, tree); |
| | 333 | } else if ((*_status)[n] == ODD) { |
| | 334 | _status->set(n, MATCHED); |
| | 335 | oddToMatched(n); |
| | 336 | } |
| | 337 | } |
| | 338 | _tree_set->eraseClass(tree); |
| | 339 | } |
| | 340 | |
| | 341 | void unmatchNode(const Node& node) { |
| | 342 | int tree = _tree_set->find(node); |
| | 343 | |
| | 344 | alternatePath(node, tree); |
| | 345 | destroyTree(tree); |
| | 346 | |
| | 347 | _matching->set(node, INVALID); |
| | 348 | } |
| | 349 | |
| | 350 | void augmentOnEdge(const Edge& edge) { |
| | 351 | Node left = _bpgraph.u(edge); |
| | 352 | int left_tree = _tree_set->find(left); |
| | 353 | |
| | 354 | alternatePath(left, left_tree); |
| | 355 | destroyTree(left_tree); |
| | 356 | _matching->set(left, _bpgraph.direct(edge, true)); |
| | 357 | |
| | 358 | Node right = _bpgraph.v(edge); |
| | 359 | int right_tree = _tree_set->find(right); |
| | 360 | |
| | 361 | alternatePath(right, right_tree); |
| | 362 | destroyTree(right_tree); |
| | 363 | _matching->set(right, _bpgraph.direct(edge, false)); |
| | 364 | } |
| | 365 | |
| | 366 | void augmentOnArc(const Arc& arc) { |
| | 367 | Node left = _bpgraph.source(arc); |
| | 368 | _status->set(left, MATCHED); |
| | 369 | _matching->set(left, arc); |
| | 370 | _pred->set(left, arc); |
| | 371 | |
| | 372 | Node right = _bpgraph.target(arc); |
| | 373 | int right_tree = _tree_set->find(right); |
| | 374 | |
| | 375 | alternatePath(right, right_tree); |
| | 376 | destroyTree(right_tree); |
| | 377 | _matching->set(right, _bpgraph.oppositeArc(arc)); |
| | 378 | } |
| | 379 | |
| | 380 | void extendOnArc(const Arc& arc) { |
| | 381 | Node base = _bpgraph.target(arc); |
| | 382 | int tree = _tree_set->find(base); |
| | 383 | |
| | 384 | Node odd = _bpgraph.source(arc); |
| | 385 | _tree_set->insert(odd, tree); |
| | 386 | _status->set(odd, ODD); |
| | 387 | matchedToOdd(odd, tree); |
| | 388 | _pred->set(odd, arc); |
| | 389 | |
| | 390 | Node even = _bpgraph.target((*_matching)[odd]); |
| | 391 | _tree_set->insert(even, tree); |
| | 392 | _status->set(even, EVEN); |
| | 393 | matchedToEven(even, tree); |
| | 394 | } |
| | 395 | |
| | 396 | public: |
| | 397 | |
| | 398 | /// \brief Constructor |
| | 399 | /// |
| | 400 | /// Constructor. |
| | 401 | MaxWeightedBpMatching(const BpGraph& bpgraph, const WeightMap& weight) |
| | 402 | : _bpgraph(bpgraph), _weight(weight), _matching(0), |
| | 403 | _node_potential(0), _node_num(0), |
| | 404 | _status(0), _pred(0), |
| | 405 | _tree_set_index(0), _tree_set(0), |
| | 406 | |
| | 407 | _delta1_index(0), _delta1(0), |
| | 408 | _delta2_index(0), _delta2(0), |
| | 409 | _delta3_index(0), _delta3(0), |
| | 410 | |
| | 411 | _delta_sum(), _unmatched(0) |
| | 412 | {} |
| | 413 | |
| | 414 | ~MaxWeightedBpMatching() { |
| | 415 | destroyStructures(); |
| | 416 | } |
| | 417 | |
| | 418 | /// \name Execution Control |
| | 419 | /// The simplest way to execute the algorithm is to use the |
| | 420 | /// \ref run() member function. |
| | 421 | |
| | 422 | ///@{ |
| | 423 | |
| | 424 | /// \brief Initialize the algorithm |
| | 425 | /// |
| | 426 | /// This function initializes the algorithm. |
| | 427 | void init() { |
| | 428 | createStructures(); |
| | 429 | |
| | 430 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 431 | (*_delta1_index)[n] = _delta1->PRE_HEAP; |
| | 432 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| | 433 | } |
| | 434 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| | 435 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| | 436 | } |
| | 437 | |
| | 438 | _delta1->clear(); |
| | 439 | _delta2->clear(); |
| | 440 | _delta3->clear(); |
| | 441 | _tree_set->clear(); |
| | 442 | |
| | 443 | _unmatched = _node_num; |
| | 444 | |
| | 445 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 446 | Value max = 0; |
| | 447 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| | 448 | if ((dualScale * _weight[a]) / 2 > max) { |
| | 449 | max = (dualScale * _weight[a]) / 2; |
| | 450 | } |
| | 451 | } |
| | 452 | _node_potential->set(n, max); |
| | 453 | _delta1->push(n, max); |
| | 454 | |
| | 455 | _tree_set->insert(n); |
| | 456 | |
| | 457 | _matching->set(n, INVALID); |
| | 458 | _status->set(n, EVEN); |
| | 459 | } |
| | 460 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| | 461 | _delta3->push(e, ((*_node_potential)[_bpgraph.u(e)] + |
| | 462 | (*_node_potential)[_bpgraph.v(e)] - |
| | 463 | dualScale * _weight[e]) / 2); |
| | 464 | } |
| | 465 | } |
| | 466 | |
| | 467 | /// \brief Initialize the algorithm |
| | 468 | /// |
| | 469 | /// This function initializes the algorithm. |
| | 470 | void redRootInit() { |
| | 471 | createStructures(); |
| | 472 | |
| | 473 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 474 | (*_delta1_index)[n] = _delta1->PRE_HEAP; |
| | 475 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| | 476 | } |
| | 477 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| | 478 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| | 479 | } |
| | 480 | |
| | 481 | _delta1->clear(); |
| | 482 | _delta2->clear(); |
| | 483 | _delta3->clear(); |
| | 484 | _tree_set->clear(); |
| | 485 | |
| | 486 | _unmatched = 0; |
| | 487 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 488 | Value max = 0; |
| | 489 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| | 490 | if ((dualScale * _weight[a]) > max) { |
| | 491 | max = dualScale * _weight[a]; |
| | 492 | } |
| | 493 | } |
| | 494 | _node_potential->set(n, max); |
| | 495 | _delta1->push(n, max); |
| | 496 | |
| | 497 | _tree_set->insert(n); |
| | 498 | |
| | 499 | _matching->set(n, INVALID); |
| | 500 | _status->set(n, EVEN); |
| | 501 | |
| | 502 | ++_unmatched; |
| | 503 | } |
| | 504 | for (BlueNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 505 | _matching->set(n, INVALID); |
| | 506 | _status->set(n, MATCHED); |
| | 507 | |
| | 508 | Arc min = INVALID; |
| | 509 | Value minrw = std::numeric_limits<Value>::max(); |
| | 510 | for (InArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| | 511 | Node v = _bpgraph.source(a); |
| | 512 | Value rw = (*_node_potential)[n] + (*_node_potential)[v] - |
| | 513 | dualScale * _weight[a]; |
| | 514 | |
| | 515 | if (minrw > rw) { |
| | 516 | min = _bpgraph.oppositeArc(a); |
| | 517 | minrw = rw; |
| | 518 | } |
| | 519 | } |
| | 520 | if (min != INVALID) { |
| | 521 | _pred->set(n, min); |
| | 522 | _delta2->push(n, minrw); |
| | 523 | } else { |
| | 524 | _pred->set(n, INVALID); |
| | 525 | } |
| | 526 | } |
| | 527 | } |
| | 528 | |
| | 529 | /// \brief Initialize the algorithm |
| | 530 | /// |
| | 531 | /// This function initializes the algorithm. |
| | 532 | void blueRootInit() { |
| | 533 | createStructures(); |
| | 534 | |
| | 535 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 536 | (*_delta1_index)[n] = _delta1->PRE_HEAP; |
| | 537 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| | 538 | } |
| | 539 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| | 540 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| | 541 | } |
| | 542 | |
| | 543 | _delta1->clear(); |
| | 544 | _delta2->clear(); |
| | 545 | _delta3->clear(); |
| | 546 | _tree_set->clear(); |
| | 547 | |
| | 548 | _unmatched = 0; |
| | 549 | for (BlueNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 550 | Value max = 0; |
| | 551 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| | 552 | if ((dualScale * _weight[a]) > max) { |
| | 553 | max = dualScale * _weight[a]; |
| | 554 | } |
| | 555 | } |
| | 556 | _node_potential->set(n, max); |
| | 557 | _delta1->push(n, max); |
| | 558 | |
| | 559 | _tree_set->insert(n); |
| | 560 | |
| | 561 | _matching->set(n, INVALID); |
| | 562 | _status->set(n, EVEN); |
| | 563 | |
| | 564 | ++_unmatched; |
| | 565 | } |
| | 566 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 567 | _matching->set(n, INVALID); |
| | 568 | _status->set(n, MATCHED); |
| | 569 | |
| | 570 | Arc min = INVALID; |
| | 571 | Value minrw = std::numeric_limits<Value>::max(); |
| | 572 | for (InArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| | 573 | Node v = _bpgraph.source(a); |
| | 574 | Value rw = (*_node_potential)[n] + (*_node_potential)[v] - |
| | 575 | dualScale * _weight[a]; |
| | 576 | |
| | 577 | if (minrw > rw) { |
| | 578 | min = _bpgraph.oppositeArc(a); |
| | 579 | minrw = rw; |
| | 580 | } |
| | 581 | } |
| | 582 | if (min != INVALID) { |
| | 583 | _pred->set(n, min); |
| | 584 | _delta2->push(n, minrw); |
| | 585 | } else { |
| | 586 | _pred->set(n, INVALID); |
| | 587 | } |
| | 588 | } |
| | 589 | } |
| | 590 | |
| | 591 | /// \brief Start the algorithm |
| | 592 | /// |
| | 593 | /// This function starts the algorithm. |
| | 594 | /// |
| | 595 | /// \pre \ref init() must be called before using this function. |
| | 596 | void start() { |
| | 597 | enum OpType { |
| | 598 | D1, D2, D3 |
| | 599 | }; |
| | 600 | |
| | 601 | while (_unmatched > 0) { |
| | 602 | Value d1 = !_delta1->empty() ? |
| | 603 | _delta1->prio() : std::numeric_limits<Value>::max(); |
| | 604 | |
| | 605 | Value d2 = !_delta2->empty() ? |
| | 606 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| | 607 | |
| | 608 | Value d3 = !_delta3->empty() ? |
| | 609 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| | 610 | |
| | 611 | _delta_sum = d3; OpType ot = D3; |
| | 612 | if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
| | 613 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
| | 614 | |
| | 615 | switch (ot) { |
| | 616 | case D1: |
| | 617 | { |
| | 618 | Node n = _delta1->top(); |
| | 619 | unmatchNode(n); |
| | 620 | --_unmatched; |
| | 621 | } |
| | 622 | break; |
| | 623 | case D2: |
| | 624 | { |
| | 625 | Node n = _delta2->top(); |
| | 626 | Arc a = (*_pred)[n]; |
| | 627 | if ((*_matching)[n] == INVALID) { |
| | 628 | augmentOnArc(a); |
| | 629 | --_unmatched; |
| | 630 | } else { |
| | 631 | extendOnArc(a); |
| | 632 | } |
| | 633 | } |
| | 634 | break; |
| | 635 | case D3: |
| | 636 | { |
| | 637 | Edge e = _delta3->top(); |
| | 638 | augmentOnEdge(e); |
| | 639 | _unmatched -= 2; |
| | 640 | } |
| | 641 | break; |
| | 642 | } |
| | 643 | } |
| | 644 | } |
| | 645 | |
| | 646 | /// \brief Run the algorithm. |
| | 647 | /// |
| | 648 | /// This method runs the \c %MaxWeightedBpMatching algorithm. |
| | 649 | /// |
| | 650 | /// \note mwbpm.run() is just a shortcut of the following code. |
| | 651 | /// \code |
| | 652 | /// mwbpm.init(); |
| | 653 | /// mwbpm.start(); |
| | 654 | /// \endcode |
| | 655 | void run() { |
| | 656 | init(); |
| | 657 | start(); |
| | 658 | } |
| | 659 | |
| | 660 | /// @} |
| | 661 | |
| | 662 | /// \name Primal Solution |
| | 663 | /// Functions to get the primal solution, i.e. the maximum weighted |
| | 664 | /// bipartite matching.\n |
| | 665 | /// Either \ref run() or \ref start() function should be called before |
| | 666 | /// using them. |
| | 667 | |
| | 668 | /// @{ |
| | 669 | |
| | 670 | /// \brief Return the weight of the matching. |
| | 671 | /// |
| | 672 | /// This function returns the weight of the found matching. |
| | 673 | /// |
| | 674 | /// \pre Either run() or start() must be called before using this function. |
| | 675 | Value matchingWeight() const { |
| | 676 | Value sum = 0; |
| | 677 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 678 | if ((*_matching)[n] != INVALID) { |
| | 679 | sum += _weight[(*_matching)[n]]; |
| | 680 | } |
| | 681 | } |
| | 682 | return sum; |
| | 683 | } |
| | 684 | |
| | 685 | /// \brief Return the size (cardinality) of the matching. |
| | 686 | /// |
| | 687 | /// This function returns the size (cardinality) of the found matching. |
| | 688 | /// |
| | 689 | /// \pre Either run() or start() must be called before using this function. |
| | 690 | int matchingSize() const { |
| | 691 | int num = 0; |
| | 692 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 693 | if ((*_matching)[n] != INVALID) { |
| | 694 | ++num; |
| | 695 | } |
| | 696 | } |
| | 697 | return num; |
| | 698 | } |
| | 699 | |
| | 700 | /// \brief Return \c true if the given edge is in the matching. |
| | 701 | /// |
| | 702 | /// This function returns \c true if the given edge is in the found |
| | 703 | /// matching. |
| | 704 | /// |
| | 705 | /// \pre Either run() or start() must be called before using this function. |
| | 706 | bool matching(const Edge& edge) const { |
| | 707 | return edge == (*_matching)[_bpgraph.u(edge)]; |
| | 708 | } |
| | 709 | |
| | 710 | /// \brief Return the matching arc (or edge) incident to the given node. |
| | 711 | /// |
| | 712 | /// This function returns the matching arc (or edge) incident to the |
| | 713 | /// given node in the found matching or \c INVALID if the node is |
| | 714 | /// not covered by the matching. |
| | 715 | /// |
| | 716 | /// \pre Either run() or start() must be called before using this function. |
| | 717 | Arc matching(const Node& node) const { |
| | 718 | return (*_matching)[node]; |
| | 719 | } |
| | 720 | |
| | 721 | /// \brief Return the mate of the given node. |
| | 722 | /// |
| | 723 | /// This function returns the mate of the given node in the found |
| | 724 | /// matching or \c INVALID if the node is not covered by the matching. |
| | 725 | /// |
| | 726 | /// \pre Either run() or start() must be called before using this function. |
| | 727 | Node mate(const Node& node) const { |
| | 728 | return (*_matching)[node] != INVALID ? |
| | 729 | _bpgraph.target((*_matching)[node]) : INVALID; |
| | 730 | } |
| | 731 | |
| | 732 | /// @} |
| | 733 | |
| | 734 | /// \name Dual Solution |
| | 735 | /// Functions to get the dual solution.\n |
| | 736 | /// Either \ref run() or \ref start() function should be called before |
| | 737 | /// using them. |
| | 738 | |
| | 739 | /// @{ |
| | 740 | |
| | 741 | /// \brief Return the value of the dual solution. |
| | 742 | /// |
| | 743 | /// This function returns the value of the dual solution. |
| | 744 | /// It should be equal to the primal value scaled by \ref dualScale |
| | 745 | /// "dual scale". |
| | 746 | /// |
| | 747 | /// \pre Either run() or start() must be called before using this function. |
| | 748 | Value dualValue() const { |
| | 749 | Value sum = 0; |
| | 750 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 751 | sum += nodeValue(n); |
| | 752 | } |
| | 753 | return sum; |
| | 754 | } |
| | 755 | |
| | 756 | /// \brief Return the dual value (potential) of the given node. |
| | 757 | /// |
| | 758 | /// This function returns the dual value (potential) of the given node. |
| | 759 | /// |
| | 760 | /// \pre Either run() or start() must be called before using this function. |
| | 761 | Value nodeValue(const Node& n) const { |
| | 762 | return (*_node_potential)[n]; |
| | 763 | } |
| | 764 | |
| | 765 | /// @} |
| | 766 | }; |
| | 767 | |
| | 768 | /// \ingroup matching |
| | 769 | /// |
| | 770 | /// \brief Weighted perfect matching in bipartite graphs |
| | 771 | /// |
| | 772 | /// This class provides an efficient implementation of multiple search tree |
| | 773 | /// augmenting path matching algorithm. The implementation is based on |
| | 774 | /// extensive use of priority queues and provides \f$O(nm\log n)\f$ time |
| | 775 | /// complexity. |
| | 776 | /// |
| | 777 | /// The maximum weighted matching problem is to find a subset of the |
| | 778 | /// edges in a bipartite graph with maximum overall weight for which |
| | 779 | /// each node has exactly one incident edge. |
| | 780 | /// It can be formulated with the following linear program. |
| | 781 | /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
| | 782 | /// \f[x_e \ge 0 \quad \forall e\in E\f] |
| | 783 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| | 784 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| | 785 | /// \f$X\f$. |
| | 786 | /// |
| | 787 | /// The algorithm calculates an optimal matching and a proof of the |
| | 788 | /// optimality. The solution of the dual problem can be used to check |
| | 789 | /// the result of the algorithm. The dual linear problem is the |
| | 790 | /// following. |
| | 791 | /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
| | 792 | /// \f[\min \sum_{u \in V}y_u \f] |
| | 793 | /// \tparam BPGR The bipartite graph type the algorithm runs on. |
| | 794 | /// \tparam WM The type edge weight map. The default type is |
| | 795 | /// \ref concepts::BpGraph::EdgeMap "BPGR::EdgeMap<int>". |
| | 796 | #ifdef DOXYGEN |
| | 797 | template <typename BPGR, typename WM> |
| | 798 | #else |
| | 799 | template <typename BPGR, |
| | 800 | typename WM = typename BPGR::template EdgeMap<int> > |
| | 801 | #endif |
| | 802 | class MaxWeightedPerfectBpMatching { |
| | 803 | public: |
| | 804 | |
| | 805 | /// The graph type of the algorithm |
| | 806 | typedef BPGR BpGraph; |
| | 807 | /// The type of the edge weight map |
| | 808 | typedef WM WeightMap; |
| | 809 | /// The value type of the edge weights |
| | 810 | typedef typename WeightMap::Value Value; |
| | 811 | |
| | 812 | /// The type of the matching map |
| | 813 | typedef typename BpGraph::template NodeMap<typename BpGraph::Arc> |
| | 814 | MatchingMap; |
| | 815 | |
| | 816 | /// \brief Scaling factor for dual solution |
| | 817 | /// |
| | 818 | /// Scaling factor for dual solution. It is equal to 4 or 1 |
| | 819 | /// according to the value type. |
| | 820 | static const int dualScale = |
| | 821 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| | 822 | |
| | 823 | private: |
| | 824 | |
| | 825 | TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph); |
| | 826 | |
| | 827 | typedef typename BpGraph::template NodeMap<Value> NodePotential; |
| | 828 | |
| | 829 | const BpGraph& _bpgraph; |
| | 830 | const WeightMap& _weight; |
| | 831 | |
| | 832 | MatchingMap* _matching; |
| | 833 | |
| | 834 | NodePotential* _node_potential; |
| | 835 | |
| | 836 | int _node_num; |
| | 837 | |
| | 838 | enum Status { |
| | 839 | EVEN = -1, MATCHED = 0, ODD = 1 |
| | 840 | }; |
| | 841 | |
| | 842 | typedef typename BpGraph::template NodeMap<Status> StatusMap; |
| | 843 | StatusMap* _status; |
| | 844 | |
| | 845 | typedef typename BpGraph::template NodeMap<Arc> PredMap; |
| | 846 | PredMap* _pred; |
| | 847 | |
| | 848 | typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| | 849 | IntNodeMap *_tree_set_index; |
| | 850 | TreeSet *_tree_set; |
| | 851 | |
| | 852 | IntNodeMap *_delta2_index; |
| | 853 | BinHeap<Value, IntNodeMap> *_delta2; |
| | 854 | |
| | 855 | IntEdgeMap *_delta3_index; |
| | 856 | BinHeap<Value, IntEdgeMap> *_delta3; |
| | 857 | |
| | 858 | Value _delta_sum; |
| | 859 | int _unmatched; |
| | 860 | |
| | 861 | void createStructures() { |
| | 862 | _node_num = countNodes(_bpgraph); |
| | 863 | |
| | 864 | if (!_matching) { |
| | 865 | _matching = new MatchingMap(_bpgraph); |
| | 866 | } |
| | 867 | |
| | 868 | if (!_node_potential) { |
| | 869 | _node_potential = new NodePotential(_bpgraph); |
| | 870 | } |
| | 871 | |
| | 872 | if (!_status) { |
| | 873 | _status = new StatusMap(_bpgraph); |
| | 874 | } |
| | 875 | |
| | 876 | if (!_pred) { |
| | 877 | _pred = new PredMap(_bpgraph); |
| | 878 | } |
| | 879 | |
| | 880 | if (!_tree_set) { |
| | 881 | _tree_set_index = new IntNodeMap(_bpgraph); |
| | 882 | _tree_set = new TreeSet(*_tree_set_index); |
| | 883 | } |
| | 884 | |
| | 885 | if (!_delta2) { |
| | 886 | _delta2_index = new IntNodeMap(_bpgraph); |
| | 887 | _delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
| | 888 | } |
| | 889 | |
| | 890 | if (!_delta3) { |
| | 891 | _delta3_index = new IntEdgeMap(_bpgraph); |
| | 892 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| | 893 | } |
| | 894 | } |
| | 895 | |
| | 896 | void destroyStructures() { |
| | 897 | if (_matching) { |
| | 898 | delete _matching; |
| | 899 | } |
| | 900 | if (_node_potential) { |
| | 901 | delete _node_potential; |
| | 902 | } |
| | 903 | if (_status) { |
| | 904 | delete _status; |
| | 905 | } |
| | 906 | if (_pred) { |
| | 907 | delete _pred; |
| | 908 | } |
| | 909 | if (_tree_set) { |
| | 910 | delete _tree_set_index; |
| | 911 | delete _tree_set; |
| | 912 | } |
| | 913 | if (_delta2) { |
| | 914 | delete _delta2_index; |
| | 915 | delete _delta2; |
| | 916 | } |
| | 917 | if (_delta3) { |
| | 918 | delete _delta3_index; |
| | 919 | delete _delta3; |
| | 920 | } |
| | 921 | } |
| | 922 | |
| | 923 | void matchedToEven(Node node, int tree) { |
| | 924 | _tree_set->insert(node, tree); |
| | 925 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| | 926 | |
| | 927 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| | 928 | _delta2->erase(node); |
| | 929 | } |
| | 930 | |
| | 931 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| | 932 | Node v = _bpgraph.source(a); |
| | 933 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| | 934 | dualScale * _weight[a]; |
| | 935 | if ((*_status)[v] == EVEN) { |
| | 936 | _delta3->push(a, rw / 2); |
| | 937 | } else if ((*_status)[v] == MATCHED) { |
| | 938 | if (_delta2->state(v) != _delta2->IN_HEAP) { |
| | 939 | _pred->set(v, a); |
| | 940 | _delta2->push(v, rw); |
| | 941 | } else if ((*_delta2)[v] > rw) { |
| | 942 | _pred->set(v, a); |
| | 943 | _delta2->decrease(v, rw); |
| | 944 | } |
| | 945 | } |
| | 946 | } |
| | 947 | } |
| | 948 | |
| | 949 | void matchedToOdd(Node node, int tree) { |
| | 950 | _tree_set->insert(node, tree); |
| | 951 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| | 952 | |
| | 953 | if (_delta2->state(node) == _delta2->IN_HEAP) { |
| | 954 | _delta2->erase(node); |
| | 955 | } |
| | 956 | } |
| | 957 | |
| | 958 | void evenToMatched(Node node, int tree) { |
| | 959 | _node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
| | 960 | Arc min = INVALID; |
| | 961 | Value minrw = std::numeric_limits<Value>::max(); |
| | 962 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| | 963 | Node v = _bpgraph.source(a); |
| | 964 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| | 965 | dualScale * _weight[a]; |
| | 966 | |
| | 967 | if ((*_status)[v] == EVEN) { |
| | 968 | _delta3->erase(a); |
| | 969 | if (minrw > rw) { |
| | 970 | min = _bpgraph.oppositeArc(a); |
| | 971 | minrw = rw; |
| | 972 | } |
| | 973 | } else if ((*_status)[v] == MATCHED) { |
| | 974 | if ((*_pred)[v] == a) { |
| | 975 | Arc mina = INVALID; |
| | 976 | Value minrwa = std::numeric_limits<Value>::max(); |
| | 977 | for (OutArcIt aa(_bpgraph, v); aa != INVALID; ++aa) { |
| | 978 | Node va = _bpgraph.target(aa); |
| | 979 | if ((*_status)[va] != EVEN || |
| | 980 | _tree_set->find(va) == tree) continue; |
| | 981 | Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
| | 982 | dualScale * _weight[aa]; |
| | 983 | if (minrwa > rwa) { |
| | 984 | minrwa = rwa; |
| | 985 | mina = aa; |
| | 986 | } |
| | 987 | } |
| | 988 | if (mina != INVALID) { |
| | 989 | _pred->set(v, mina); |
| | 990 | _delta2->increase(v, minrwa); |
| | 991 | } else { |
| | 992 | _pred->set(v, INVALID); |
| | 993 | _delta2->erase(v); |
| | 994 | } |
| | 995 | } |
| | 996 | } |
| | 997 | } |
| | 998 | if (min != INVALID) { |
| | 999 | _pred->set(node, min); |
| | 1000 | _delta2->push(node, minrw); |
| | 1001 | } else { |
| | 1002 | _pred->set(node, INVALID); |
| | 1003 | } |
| | 1004 | } |
| | 1005 | |
| | 1006 | void oddToMatched(Node node) { |
| | 1007 | _node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
| | 1008 | Arc min = INVALID; |
| | 1009 | Value minrw = std::numeric_limits<Value>::max(); |
| | 1010 | for (InArcIt a(_bpgraph, node); a != INVALID; ++a) { |
| | 1011 | Node v = _bpgraph.source(a); |
| | 1012 | if ((*_status)[v] != EVEN) continue; |
| | 1013 | Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
| | 1014 | dualScale * _weight[a]; |
| | 1015 | |
| | 1016 | if (minrw > rw) { |
| | 1017 | min = _bpgraph.oppositeArc(a); |
| | 1018 | minrw = rw; |
| | 1019 | } |
| | 1020 | } |
| | 1021 | if (min != INVALID) { |
| | 1022 | _pred->set(node, min); |
| | 1023 | _delta2->push(node, minrw); |
| | 1024 | } else { |
| | 1025 | _pred->set(node, INVALID); |
| | 1026 | } |
| | 1027 | } |
| | 1028 | |
| | 1029 | void alternatePath(Node even, int tree) { |
| | 1030 | Node odd; |
| | 1031 | |
| | 1032 | _status->set(even, MATCHED); |
| | 1033 | evenToMatched(even, tree); |
| | 1034 | |
| | 1035 | Arc prev = (*_matching)[even]; |
| | 1036 | while (prev != INVALID) { |
| | 1037 | odd = _bpgraph.target(prev); |
| | 1038 | even = _bpgraph.target((*_pred)[odd]); |
| | 1039 | _matching->set(odd, (*_pred)[odd]); |
| | 1040 | _status->set(odd, MATCHED); |
| | 1041 | oddToMatched(odd); |
| | 1042 | |
| | 1043 | prev = (*_matching)[even]; |
| | 1044 | _status->set(even, MATCHED); |
| | 1045 | _matching->set(even, _bpgraph.oppositeArc((*_matching)[odd])); |
| | 1046 | evenToMatched(even, tree); |
| | 1047 | } |
| | 1048 | } |
| | 1049 | |
| | 1050 | void destroyTree(int tree) { |
| | 1051 | for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
| | 1052 | if ((*_status)[n] == EVEN) { |
| | 1053 | _status->set(n, MATCHED); |
| | 1054 | evenToMatched(n, tree); |
| | 1055 | } else if ((*_status)[n] == ODD) { |
| | 1056 | _status->set(n, MATCHED); |
| | 1057 | oddToMatched(n); |
| | 1058 | } |
| | 1059 | } |
| | 1060 | _tree_set->eraseClass(tree); |
| | 1061 | } |
| | 1062 | |
| | 1063 | void unmatchNode(const Node& node) { |
| | 1064 | int tree = _tree_set->find(node); |
| | 1065 | |
| | 1066 | alternatePath(node, tree); |
| | 1067 | destroyTree(tree); |
| | 1068 | |
| | 1069 | _matching->set(node, INVALID); |
| | 1070 | } |
| | 1071 | |
| | 1072 | void augmentOnEdge(const Edge& edge) { |
| | 1073 | Node left = _bpgraph.u(edge); |
| | 1074 | int left_tree = _tree_set->find(left); |
| | 1075 | |
| | 1076 | alternatePath(left, left_tree); |
| | 1077 | destroyTree(left_tree); |
| | 1078 | _matching->set(left, _bpgraph.direct(edge, true)); |
| | 1079 | |
| | 1080 | Node right = _bpgraph.v(edge); |
| | 1081 | int right_tree = _tree_set->find(right); |
| | 1082 | |
| | 1083 | alternatePath(right, right_tree); |
| | 1084 | destroyTree(right_tree); |
| | 1085 | _matching->set(right, _bpgraph.direct(edge, false)); |
| | 1086 | } |
| | 1087 | |
| | 1088 | void augmentOnArc(const Arc& arc) { |
| | 1089 | Node left = _bpgraph.source(arc); |
| | 1090 | _status->set(left, MATCHED); |
| | 1091 | _matching->set(left, arc); |
| | 1092 | _pred->set(left, arc); |
| | 1093 | |
| | 1094 | Node right = _bpgraph.target(arc); |
| | 1095 | int right_tree = _tree_set->find(right); |
| | 1096 | |
| | 1097 | alternatePath(right, right_tree); |
| | 1098 | destroyTree(right_tree); |
| | 1099 | _matching->set(right, _bpgraph.oppositeArc(arc)); |
| | 1100 | } |
| | 1101 | |
| | 1102 | void extendOnArc(const Arc& arc) { |
| | 1103 | Node base = _bpgraph.target(arc); |
| | 1104 | int tree = _tree_set->find(base); |
| | 1105 | |
| | 1106 | Node odd = _bpgraph.source(arc); |
| | 1107 | _tree_set->insert(odd, tree); |
| | 1108 | _status->set(odd, ODD); |
| | 1109 | matchedToOdd(odd, tree); |
| | 1110 | _pred->set(odd, arc); |
| | 1111 | |
| | 1112 | Node even = _bpgraph.target((*_matching)[odd]); |
| | 1113 | _tree_set->insert(even, tree); |
| | 1114 | _status->set(even, EVEN); |
| | 1115 | matchedToEven(even, tree); |
| | 1116 | } |
| | 1117 | |
| | 1118 | public: |
| | 1119 | |
| | 1120 | /// \brief Constructor |
| | 1121 | /// |
| | 1122 | /// Constructor. |
| | 1123 | MaxWeightedPerfectBpMatching(const BpGraph& bpgraph, const WeightMap& weight) |
| | 1124 | : _bpgraph(bpgraph), _weight(weight), _matching(0), |
| | 1125 | _node_potential(0), _node_num(0), |
| | 1126 | _status(0), _pred(0), |
| | 1127 | _tree_set_index(0), _tree_set(0), |
| | 1128 | |
| | 1129 | _delta2_index(0), _delta2(0), |
| | 1130 | _delta3_index(0), _delta3(0), |
| | 1131 | |
| | 1132 | _delta_sum(), _unmatched(0) |
| | 1133 | {} |
| | 1134 | |
| | 1135 | ~MaxWeightedPerfectBpMatching() { |
| | 1136 | destroyStructures(); |
| | 1137 | } |
| | 1138 | |
| | 1139 | /// \name Execution Control |
| | 1140 | /// The simplest way to execute the algorithm is to use the |
| | 1141 | /// \ref run() member function. |
| | 1142 | |
| | 1143 | ///@{ |
| | 1144 | |
| | 1145 | /// \brief Initialize the algorithm |
| | 1146 | /// |
| | 1147 | /// This function initializes the algorithm. |
| | 1148 | /// |
| | 1149 | /// \return If it is false, then the graph does not have a perfect matching. |
| | 1150 | bool init() { |
| | 1151 | createStructures(); |
| | 1152 | |
| | 1153 | if (countRedNodes(_bpgraph) != countBlueNodes(_bpgraph)) { |
| | 1154 | return false; |
| | 1155 | } |
| | 1156 | |
| | 1157 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 1158 | (*_delta2_index)[n] = _delta2->PRE_HEAP; |
| | 1159 | } |
| | 1160 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| | 1161 | (*_delta3_index)[e] = _delta3->PRE_HEAP; |
| | 1162 | } |
| | 1163 | |
| | 1164 | _delta2->clear(); |
| | 1165 | _delta3->clear(); |
| | 1166 | _tree_set->clear(); |
| | 1167 | |
| | 1168 | _unmatched = _node_num; |
| | 1169 | |
| | 1170 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 1171 | Value max = - std::numeric_limits<Value>::max(); |
| | 1172 | for (OutArcIt a(_bpgraph, n); a != INVALID; ++a) { |
| | 1173 | if ((dualScale * _weight[a]) / 2 > max) { |
| | 1174 | max = (dualScale * _weight[a]) / 2; |
| | 1175 | } |
| | 1176 | } |
| | 1177 | if (max == - std::numeric_limits<Value>::max()) { |
| | 1178 | return false; |
| | 1179 | } |
| | 1180 | _node_potential->set(n, max); |
| | 1181 | |
| | 1182 | _tree_set->insert(n); |
| | 1183 | |
| | 1184 | _matching->set(n, INVALID); |
| | 1185 | _status->set(n, EVEN); |
| | 1186 | } |
| | 1187 | for (EdgeIt e(_bpgraph); e != INVALID; ++e) { |
| | 1188 | _delta3->push(e, ((*_node_potential)[_bpgraph.u(e)] + |
| | 1189 | (*_node_potential)[_bpgraph.v(e)] - |
| | 1190 | dualScale * _weight[e]) / 2); |
| | 1191 | } |
| | 1192 | return true; |
| | 1193 | } |
| | 1194 | |
| | 1195 | /// \brief Start the algorithm |
| | 1196 | /// |
| | 1197 | /// This function starts the algorithm. |
| | 1198 | /// |
| | 1199 | /// \pre \ref init() must be called before using this function. |
| | 1200 | /// |
| | 1201 | /// \return True when a perfect matching is found. |
| | 1202 | bool start() { |
| | 1203 | enum OpType { |
| | 1204 | D2, D3 |
| | 1205 | }; |
| | 1206 | |
| | 1207 | while (_unmatched > 0) { |
| | 1208 | Value d2 = !_delta2->empty() ? |
| | 1209 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| | 1210 | |
| | 1211 | Value d3 = !_delta3->empty() ? |
| | 1212 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| | 1213 | |
| | 1214 | _delta_sum = d3; OpType ot = D3; |
| | 1215 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
| | 1216 | |
| | 1217 | if (_delta_sum == std::numeric_limits<Value>::max()) { |
| | 1218 | return false; |
| | 1219 | } |
| | 1220 | |
| | 1221 | switch (ot) { |
| | 1222 | case D2: |
| | 1223 | { |
| | 1224 | Node n = _delta2->top(); |
| | 1225 | Arc a = (*_pred)[n]; |
| | 1226 | if ((*_matching)[n] == INVALID) { |
| | 1227 | augmentOnArc(a); |
| | 1228 | --_unmatched; |
| | 1229 | } else { |
| | 1230 | extendOnArc(a); |
| | 1231 | } |
| | 1232 | } |
| | 1233 | break; |
| | 1234 | case D3: |
| | 1235 | { |
| | 1236 | Edge e = _delta3->top(); |
| | 1237 | augmentOnEdge(e); |
| | 1238 | _unmatched -= 2; |
| | 1239 | } |
| | 1240 | break; |
| | 1241 | } |
| | 1242 | } |
| | 1243 | return true; |
| | 1244 | } |
| | 1245 | |
| | 1246 | /// \brief Run the algorithm. |
| | 1247 | /// |
| | 1248 | /// This method runs the \c %MaxWeightedPerfectBpMatching algorithm. |
| | 1249 | /// |
| | 1250 | /// \note mwpbpm.run() is just a shortcut of the following code. |
| | 1251 | /// \code |
| | 1252 | /// return mwpbpm.init() && mwpbpm.start(); |
| | 1253 | /// \endcode |
| | 1254 | /// |
| | 1255 | /// \return True when a perfect matching is found. |
| | 1256 | bool run() { |
| | 1257 | return init() && start(); |
| | 1258 | } |
| | 1259 | |
| | 1260 | /// @} |
| | 1261 | |
| | 1262 | /// \name Primal Solution |
| | 1263 | /// Functions to get the primal solution, i.e. the maximum weighted |
| | 1264 | /// bipartite matching.\n |
| | 1265 | /// Either \ref run() or \ref start() function should be called before |
| | 1266 | /// using them and a matching should be found. |
| | 1267 | |
| | 1268 | /// @{ |
| | 1269 | |
| | 1270 | /// \brief Return the weight of the matching. |
| | 1271 | /// |
| | 1272 | /// This function returns the weight of the found matching. |
| | 1273 | /// |
| | 1274 | /// \pre A perfect matching has been found. |
| | 1275 | Value matchingWeight() const { |
| | 1276 | Value sum = 0; |
| | 1277 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 1278 | sum += _weight[(*_matching)[n]]; |
| | 1279 | } |
| | 1280 | return sum; |
| | 1281 | } |
| | 1282 | |
| | 1283 | /// \brief Return the size (cardinality) of the matching. |
| | 1284 | /// |
| | 1285 | /// This function returns the size (cardinality) of the found matching. |
| | 1286 | /// |
| | 1287 | /// \pre A perfect matching has been found. |
| | 1288 | int matchingSize() const { |
| | 1289 | int num = 0; |
| | 1290 | for (RedNodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 1291 | ++num; |
| | 1292 | } |
| | 1293 | return num; |
| | 1294 | } |
| | 1295 | |
| | 1296 | /// \brief Return \c true if the given edge is in the matching. |
| | 1297 | /// |
| | 1298 | /// This function returns \c true if the given edge is in the found |
| | 1299 | /// matching. |
| | 1300 | /// |
| | 1301 | /// \pre A perfect matching has been found. |
| | 1302 | bool matching(const Edge& edge) const { |
| | 1303 | return edge == (*_matching)[_bpgraph.u(edge)]; |
| | 1304 | } |
| | 1305 | |
| | 1306 | /// \brief Return the matching arc (or edge) incident to the given node. |
| | 1307 | /// |
| | 1308 | /// This function returns the matching arc (or edge) incident to the |
| | 1309 | /// given node in the found matching or \c INVALID if the node is |
| | 1310 | /// not covered by the matching. |
| | 1311 | /// |
| | 1312 | /// \pre A perfect matching has been found. |
| | 1313 | Arc matching(const Node& node) const { |
| | 1314 | return (*_matching)[node]; |
| | 1315 | } |
| | 1316 | |
| | 1317 | /// \brief Return the mate of the given node. |
| | 1318 | /// |
| | 1319 | /// This function returns the mate of the given node in the found |
| | 1320 | /// matching or \c INVALID if the node is not covered by the matching. |
| | 1321 | /// |
| | 1322 | /// \pre Either run() or start() must be called before using this function. |
| | 1323 | Node mate(const Node& node) const { |
| | 1324 | return (*_matching)[node] != INVALID ? |
| | 1325 | _bpgraph.target((*_matching)[node]) : INVALID; |
| | 1326 | } |
| | 1327 | |
| | 1328 | /// @} |
| | 1329 | |
| | 1330 | /// \name Dual Solution |
| | 1331 | /// Functions to get the dual solution.\n |
| | 1332 | /// Either \ref run() or \ref start() function should be called before |
| | 1333 | /// using them and a matching should be found. |
| | 1334 | |
| | 1335 | /// @{ |
| | 1336 | |
| | 1337 | /// \brief Return the value of the dual solution. |
| | 1338 | /// |
| | 1339 | /// This function returns the value of the dual solution. |
| | 1340 | /// It should be equal to the primal value scaled by \ref dualScale |
| | 1341 | /// "dual scale". |
| | 1342 | /// |
| | 1343 | /// \pre A perfect matching has been found. |
| | 1344 | Value dualValue() const { |
| | 1345 | Value sum = 0; |
| | 1346 | for (NodeIt n(_bpgraph); n != INVALID; ++n) { |
| | 1347 | sum += nodeValue(n); |
| | 1348 | } |
| | 1349 | return sum; |
| | 1350 | } |
| | 1351 | |
| | 1352 | /// \brief Return the dual value (potential) of the given node. |
| | 1353 | /// |
| | 1354 | /// This function returns the dual value (potential) of the given node. |
| | 1355 | /// |
| | 1356 | /// \pre A perfect matching has been found. |
| | 1357 | Value nodeValue(const Node& n) const { |
| | 1358 | return (*_node_potential)[n]; |
| | 1359 | } |
| | 1360 | |
| | 1361 | /// @} |
| | 1362 | }; |
| | 1363 | |
| | 1364 | } //END OF NAMESPACE LEMON |
| | 1365 | |
| | 1366 | #endif //LEMON_BPMATCHING_H |