| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2010 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef BP_MATCHING_H |
| 20 | #define BP_MATCHING_H |
| 21 | |
| 22 | #include <limits> |
| 23 | #include <list> |
| 24 | #include <algorithm> |
| 25 | #include <assert.h> |
| 26 | #include <queue> |
| 27 | |
| 28 | #include <lemon/core.h> |
| 29 | #include <lemon/bin_heap.h> |
| 30 | |
| 31 | ///\ingroup matching |
| 32 | ///\file |
| 33 | ///\brief Maximum weight matching algorithms in bipartite graphs. |
| 34 | |
| 35 | namespace lemon { |
| 36 | |
| 37 | /// \ingroup matching |
| 38 | /// |
| 39 | /// \brief Maximum weight matching in (sparse) bipartite graphs |
| 40 | /// |
| 41 | /// This class implements a successive shortest path algorithm for finding |
| 42 | /// a maximum weight matching in an undirected bipartite graph. |
| 43 | /// Let \f$G = (X \cup Y, E)\f$ be an undirected bipartite graph. The |
| 44 | /// following linear program corresponds to a maximum weight matching |
| 45 | /// in the graph \f$G\f$. |
| 46 | /// |
| 47 | /** \f$\begin{array}{rrcll} \ |
| 48 | \max & \displaystyle\sum_{(i,j) \in E} c_{ij} x_{ij}\\ \ |
| 49 | \mbox{s.t.} & \displaystyle\sum_{i \in X} x_{ij} & \leq & 1, \ |
| 50 | & \forall j \in \{ j^\prime \in Y \mid (i,j^\prime) \in E \}\\ \ |
| 51 | & \displaystyle\sum_{j \in Y} x_{ij} & \leq & 1, \ |
| 52 | & \forall i \in \{ i^\prime \in X \mid (i^\prime,j) \in E \}\\ \ |
| 53 | & x_{ij} & \geq & 0, & \forall (i,j) \in E\\\end{array}\f$ |
| 54 | */ |
| 55 | /// |
| 56 | /// where \f$c_{ij}\f$ is the weight of edge \f$(i,j)\f$. The dual problem |
| 57 | /// is: |
| 58 | /// |
| 59 | /** \f$\begin{array}{rrcll}\min & \displaystyle\sum_{v \in X \cup Y} p_v\\ \ |
| 60 | \mbox{s.t.} & p_i + p_j & \geq & c_{ij}, & \forall (i,j) \in E\\ \ |
| 61 | & p_v & \geq & 0, & \forall v \in X \cup Y \end{array}\f$ |
| 62 | */ |
| 63 | /// |
| 64 | /// A maximum weight matching is constructed by iteratively considering the |
| 65 | /// vertices in \f$X = \{x_1, \ldots, x_n\}\f$. In every iteration \f$k\f$ |
| 66 | /// we establish primal and dual complementary slackness for the subgraph |
| 67 | /// \f$G[X_k \cup Y]\f$ where \f$X_k = \{x_1, \ldots, x_k\}\f$. |
| 68 | /// So after the final iteration the primal and dual solution will be equal, |
| 69 | /// and we will thus have a maximum weight matching. The time complexity of |
| 70 | /// this method is \f$O(n(n + m)\log n)\f$. |
| 71 | /// |
| 72 | /// In case the bipartite graph is dense, it is better to use |
| 73 | /// \ref MaxWeightedDenseBipartiteMatching, which has a time complexity of |
| 74 | /// \f$O(n^3)\f$. |
| 75 | /// |
| 76 | /// \tparam BGR The bipartite graph type the algorithm runs on. |
| 77 | /// \tparam WM The type edge weight map. The default type is |
| 78 | /// \ref concepts::Graph::EdgeMap "BGR::EdgeMap<int>". |
| 79 | #ifdef DOXYGEN |
| 80 | template <typename BGR, typename WM> |
| 81 | #else |
| 82 | template <typename BGR, |
| 83 | typename WM = typename BGR::template EdgeMap<int> > |
| 84 | #endif |
| 85 | class MaxWeightedBipartiteMatching |
| 86 | { |
| 87 | public: |
| 88 | /// The graph type of the algorithm |
| 89 | typedef BGR BpGraph; |
| 90 | /// The type of the edge weight map |
| 91 | typedef WM WeightMap; |
| 92 | /// The value type of the edge weights |
| 93 | typedef typename WeightMap::Value Value; |
| 94 | /// The type of the matching map |
| 95 | typedef typename BpGraph:: |
| 96 | template NodeMap<typename BpGraph::Edge> MatchingMap; |
| 97 | |
| 98 | private: |
| 99 | TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph); |
| 100 | typedef typename BpGraph::template NodeMap<Value> PotMap; |
| 101 | typedef std::list<RedNode> RedNodeList; |
| 102 | typedef std::list<BlueNode> BlueNodeList; |
| 103 | typedef typename BpGraph::template NodeMap<Value> DistMap; |
| 104 | typedef typename BpGraph::template BlueMap<int> HeapCrossRef; |
| 105 | typedef BinHeap<Value, HeapCrossRef> Heap; |
| 106 | typedef typename BpGraph::template NodeMap<Arc> PredMap; |
| 107 | |
| 108 | const BpGraph& _graph; |
| 109 | const WeightMap& _weight; |
| 110 | PotMap* _pPot; |
| 111 | MatchingMap* _pMatchingMap; |
| 112 | Value _matchingWeight; |
| 113 | int _matchingSize; |
| 114 | |
| 115 | void createStructures() |
| 116 | { |
| 117 | _pPot = new PotMap(_graph, 0); |
| 118 | _pMatchingMap = new MatchingMap(_graph, INVALID); |
| 119 | } |
| 120 | |
| 121 | void destroyStructures() |
| 122 | { |
| 123 | delete _pPot; |
| 124 | delete _pMatchingMap; |
| 125 | } |
| 126 | |
| 127 | bool isFree(const Node& v) |
| 128 | { |
| 129 | return (*_pMatchingMap)[v] == INVALID; |
| 130 | } |
| 131 | |
| 132 | void augmentPath(Arc a, bool matching, const PredMap& pred) |
| 133 | { |
| 134 | // M' = M ^ EP |
| 135 | while (a != INVALID) |
| 136 | { |
| 137 | if (!matching) |
| 138 | { |
| 139 | _pMatchingMap->set(_graph.source(a), a); |
| 140 | _pMatchingMap->set(_graph.target(a), a); |
| 141 | } |
| 142 | |
| 143 | matching = !matching; |
| 144 | a = pred[_graph.source(a)]; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | void augment(const Node& x, DistMap& dist, PredMap& pred) |
| 149 | { |
| 150 | assert(isFree(x)); |
| 151 | |
| 152 | /** |
| 153 | * In case maxCardinality == false, we also need to consider |
| 154 | * augmenting paths starting from x and ending in a matched |
| 155 | * node x' in X. Augmenting such a path does *not* increase |
| 156 | * the cardinality of the matching. It may, however, increase |
| 157 | * the weight of the matching. |
| 158 | * |
| 159 | * Along with a shortest path starting from x and ending in |
| 160 | * a free vertex y in Y, we also determine x' such that |
| 161 | * y' = pred[x'], |
| 162 | * (pot[x] + pot[y'] - dist[x, y']) - w(y', x') is maximal |
| 163 | * |
| 164 | * Since (y', x') is part of the matching, |
| 165 | * by primal complementary slackness we have that |
| 166 | * pot[y'] + pot[x'] = w(y', x'). |
| 167 | * |
| 168 | * Hence |
| 169 | * x' = arg max_{x' \in X} { pot[x] + pot[y'] - dist[x, y']) -w(y', x') } |
| 170 | * = arg max_{x' \in X} { pot[x] - dist[x, y'] - pot[x'] } |
| 171 | * = arg max_{x' \in X} { -dist[x, y'] - pot[x'] } |
| 172 | * = arg min_{x' \in X} { dist[x, y'] + [x'] } |
| 173 | * |
| 174 | * We only augment x ->* x' if dist(x,y) > dist[x, y'] + pot[x'] |
| 175 | * Otherwise we augment x ->* y. |
| 176 | */ |
| 177 | |
| 178 | Value UB = (*_pPot)[x]; |
| 179 | dist[x] = 0; |
| 180 | |
| 181 | RedNodeList visitedX; |
| 182 | BlueNodeList visitedY; |
| 183 | |
| 184 | // heap only contains nodes in Y |
| 185 | HeapCrossRef heapCrossRef(_graph, Heap::PRE_HEAP); |
| 186 | Heap heap(heapCrossRef); |
| 187 | |
| 188 | // add nodes adjacent to x to heap, and update UB |
| 189 | visitedX.push_back(x); |
| 190 | for (IncEdgeIt e(_graph, x); e != INVALID; ++e) |
| 191 | { |
| 192 | const BlueNode y = _graph.blueNode(e); |
| 193 | Value dist_y = (*_pPot)[x] + (*_pPot)[y] - _weight[e]; |
| 194 | |
| 195 | if (dist_y >= UB) |
| 196 | continue; |
| 197 | |
| 198 | if (isFree(y)) |
| 199 | UB = dist_y; |
| 200 | |
| 201 | dist[y] = dist_y; |
| 202 | pred[y] = _graph.direct(e, x); |
| 203 | |
| 204 | assert(heap.state(y) == Heap::PRE_HEAP); |
| 205 | heap.push(y, dist_y); |
| 206 | } |
| 207 | |
| 208 | Node x_min = x; |
| 209 | Value min_dist = 0, x_min_dist = (*_pPot)[x]; |
| 210 | |
| 211 | while (true) |
| 212 | { |
| 213 | assert(heap.empty() || heap.prio() == dist[heap.top()]); |
| 214 | |
| 215 | if (heap.empty() || heap.prio() >= x_min_dist) |
| 216 | { |
| 217 | min_dist = x_min_dist; |
| 218 | |
| 219 | if (x_min != x) |
| 220 | { |
| 221 | // we have an augmenting path between x and x_min |
| 222 | // that doesn't increase the matching size |
| 223 | _matchingWeight += (*_pPot)[x] - x_min_dist; |
| 224 | |
| 225 | // x_min becomes free, and will always remain free |
| 226 | (*_pMatchingMap)[x_min] = INVALID; |
| 227 | augmentPath(pred[x_min], true, pred); |
| 228 | } |
| 229 | break; |
| 230 | } |
| 231 | |
| 232 | const BlueNode y = heap.top(); |
| 233 | const Value dist_y = heap.prio(); |
| 234 | heap.pop(); |
| 235 | |
| 236 | visitedY.push_back(y); |
| 237 | if (isFree(y)) |
| 238 | { |
| 239 | // we have an augmenting path between x and y |
| 240 | augmentPath(pred[y], false, pred); |
| 241 | _matchingSize++; |
| 242 | |
| 243 | assert((*_pPot)[y] == 0); |
| 244 | _matchingWeight += (*_pPot)[x] - dist_y; |
| 245 | |
| 246 | min_dist = dist_y; |
| 247 | break; |
| 248 | } |
| 249 | else |
| 250 | { |
| 251 | // y is not free, so there *must* be only one arc pointing toward X |
| 252 | const Edge e = (*_pMatchingMap)[y]; |
| 253 | assert(_graph.blueNode(e) == y); |
| 254 | |
| 255 | const RedNode x2 = _graph.redNode(e); |
| 256 | pred[x2] = _graph.direct(e, y); |
| 257 | visitedX.push_back(x2); |
| 258 | dist[x2] = dist_y; // matched edges have a reduced weight of 0 |
| 259 | |
| 260 | if (dist_y + (*_pPot)[x2] < x_min_dist) |
| 261 | { |
| 262 | x_min = x2; |
| 263 | x_min_dist = dist_y + (*_pPot)[x2]; |
| 264 | |
| 265 | // we have a better criterion now |
| 266 | if (UB > x_min_dist) |
| 267 | UB = x_min_dist; |
| 268 | } |
| 269 | |
| 270 | for (IncEdgeIt e2(_graph, x2); e2 != INVALID; ++e2) |
| 271 | { |
| 272 | if (static_cast<const Edge>(e2) == e) continue; |
| 273 | |
| 274 | const BlueNode y2 = _graph.blueNode(e2); |
| 275 | |
| 276 | Value dist_y2 = dist_y + (*_pPot)[x2] + (*_pPot)[y2] - _weight[e2]; |
| 277 | |
| 278 | if (dist_y2 >= UB) |
| 279 | continue; |
| 280 | |
| 281 | if (isFree(y2)) |
| 282 | UB = dist_y2; |
| 283 | |
| 284 | if (heap.state(y2) == Heap::PRE_HEAP) |
| 285 | { |
| 286 | dist[y2] = dist_y2; |
| 287 | pred[y2] = _graph.direct(e2, x2); |
| 288 | heap.push(y2, dist_y2); |
| 289 | } |
| 290 | else if (dist_y2 < dist[y2]) |
| 291 | { |
| 292 | dist[y2] = dist_y2; |
| 293 | pred[y2] = _graph.direct(e2, x2); |
| 294 | heap.decrease(y2, dist_y2); |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | // restore primal and dual complementary slackness |
| 301 | for (typename RedNodeList::const_iterator itX = visitedX.begin(); |
| 302 | itX != visitedX.end(); itX++) |
| 303 | { |
| 304 | const RedNode& x = *itX; |
| 305 | assert(min_dist - dist[x] >= 0); |
| 306 | (*_pPot)[x] -= min_dist - dist[x]; |
| 307 | assert((*_pPot)[x] >= 0); |
| 308 | } |
| 309 | |
| 310 | for (typename BlueNodeList::const_iterator itY = visitedY.begin(); |
| 311 | itY != visitedY.end(); itY++) |
| 312 | { |
| 313 | const BlueNode& y = *itY; |
| 314 | assert(min_dist - dist[y] >= 0); |
| 315 | (*_pPot)[y] += min_dist - dist[y]; |
| 316 | assert((*_pPot)[y] >= 0); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | public: |
| 321 | /// \brief Constructor |
| 322 | /// |
| 323 | /// Constructor. |
| 324 | /// |
| 325 | /// \param graph is the input graph |
| 326 | /// \param weight are the edge weights |
| 327 | MaxWeightedBipartiteMatching(const BpGraph& graph, const WeightMap& weight) |
| 328 | : _graph(graph) |
| 329 | , _weight(weight) |
| 330 | , _pPot(NULL) |
| 331 | , _pMatchingMap(NULL) |
| 332 | , _matchingWeight(0) |
| 333 | , _matchingSize(0) |
| 334 | { |
| 335 | } |
| 336 | |
| 337 | ~MaxWeightedBipartiteMatching() |
| 338 | { |
| 339 | destroyStructures(); |
| 340 | } |
| 341 | |
| 342 | /// \brief Initialize the algorithm |
| 343 | /// |
| 344 | /// This function initializes the algorithm. |
| 345 | /// |
| 346 | /// \param greedy indicates whether a nonempty initial matching |
| 347 | /// should be used; this might be faster in some cases. |
| 348 | void init(bool greedy = true) |
| 349 | { |
| 350 | destroyStructures(); |
| 351 | createStructures(); |
| 352 | _matchingWeight = 0; |
| 353 | _matchingSize = 0; |
| 354 | |
| 355 | // pot[x] is set to maximum incident edge weight |
| 356 | for (RedIt x(_graph); x != INVALID; ++x) |
| 357 | { |
| 358 | Value max_weight = 0; |
| 359 | Edge e_max = INVALID; |
| 360 | for (IncEdgeIt e(_graph, x); e != INVALID; ++e) |
| 361 | { |
| 362 | // pot[y] = 0 for all y \in Y |
| 363 | assert((*_pPot)[_graph.blueNode(e)] == 0); |
| 364 | |
| 365 | if (_weight[e] > max_weight) |
| 366 | { |
| 367 | max_weight = _weight[e]; |
| 368 | e_max = e; |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | if (e_max != INVALID) |
| 373 | { |
| 374 | _pPot->set(x, max_weight); |
| 375 | |
| 376 | const Node y = _graph.blueNode(e_max); |
| 377 | if (greedy && isFree(y)) |
| 378 | { |
| 379 | _matchingWeight += max_weight; |
| 380 | _matchingSize++; |
| 381 | _pMatchingMap->set(x, e_max); |
| 382 | _pMatchingMap->set(y, e_max); |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | /// \brief Start the algorithm |
| 389 | /// |
| 390 | /// This function starts the algorithm. |
| 391 | /// |
| 392 | /// \pre \ref init() must have been called before using this function. |
| 393 | void start() |
| 394 | { |
| 395 | DistMap dist(_graph, 0); |
| 396 | PredMap pred(_graph, INVALID); |
| 397 | |
| 398 | for (RedIt x(_graph); x != INVALID; ++x) |
| 399 | { |
| 400 | if (isFree(x)) |
| 401 | augment(x, dist, pred); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | /// \brief Run the algorithm. |
| 406 | /// |
| 407 | /// This method runs the \c %MaxWeightedBipartiteMatching algorithm. |
| 408 | /// |
| 409 | /// \param greedy indicates whether a nonempty initial matching |
| 410 | /// should be used; this might be faster in some cases. |
| 411 | /// |
| 412 | /// \note mwbm.run() is just a shortcut of the following code. |
| 413 | /// \code |
| 414 | /// mwbm.init(); |
| 415 | /// mwbm.start(); |
| 416 | /// \endcode |
| 417 | void run(bool greedy = true) |
| 418 | { |
| 419 | init(greedy); |
| 420 | start(); |
| 421 | } |
| 422 | |
| 423 | /// \brief Check whether the solution is optimal |
| 424 | /// |
| 425 | /// Check using the dual solution whether the primal solution is optimal. |
| 426 | /// |
| 427 | /// \return \c true if the solution is optimal. |
| 428 | bool checkOptimality() const |
| 429 | { |
| 430 | assert(_pMatchingMap && _pPot); |
| 431 | |
| 432 | /* |
| 433 | * Primal: |
| 434 | * max \sum_{i,j} c_{ij} x_{ij} |
| 435 | * s.t. \sum_i x_{ij} <= 1 |
| 436 | * \sum_j x_{ij} <= 1 |
| 437 | * x_{ij} >= 0 |
| 438 | * |
| 439 | * Dual: |
| 440 | * min \sum_j p_j + \sum_i r_i |
| 441 | * s.t. p_j + r_i >= c_{ij} |
| 442 | * p_j >= 0 |
| 443 | * r_i >= 0 |
| 444 | * |
| 445 | * Solution is optimal iff: |
| 446 | * - Primal complementary slackness: |
| 447 | * - x_{ij} = 1 => p_j + r_i = c_{ij} |
| 448 | * - Dual complementary slackness: |
| 449 | * - p_j != 0 => \sum_i x_{ij} = 1 |
| 450 | * - r_i != 0 => \sum_j x_{ij} = 1 |
| 451 | */ |
| 452 | |
| 453 | // check primal solution |
| 454 | for (NodeIt n(_graph); n != INVALID; ++n) |
| 455 | { |
| 456 | const Edge e = (*_pMatchingMap)[n]; |
| 457 | |
| 458 | if (e != INVALID) |
| 459 | { |
| 460 | const Node u = _graph.u(e); |
| 461 | const Node v = _graph.v(e); |
| 462 | |
| 463 | if (n != u && n != v) |
| 464 | return false; // e must be incident to n |
| 465 | if ((*_pMatchingMap)[u] != (*_pMatchingMap)[v]) |
| 466 | return false; // primal feasibility |
| 467 | if ((*_pPot)[u] + (*_pPot)[v] != _weight[e]) |
| 468 | return false; // primal complementary slackness |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | // check dual solution |
| 473 | for (NodeIt n(_graph); n != INVALID; ++n) |
| 474 | { |
| 475 | const Value pot_n = (*_pPot)[n]; |
| 476 | if (pot_n < 0) |
| 477 | return false; // dual feasibility |
| 478 | if ((*_pMatchingMap)[n] == INVALID && pot_n != 0) |
| 479 | return false; // dual complementary slackness |
| 480 | } |
| 481 | for (EdgeIt e(_graph); e != INVALID; ++e) |
| 482 | { |
| 483 | if ((*_pPot)[_graph.u(e)] + (*_pPot)[_graph.v(e)] < _weight[e]) |
| 484 | return false; // dual feasibility |
| 485 | } |
| 486 | |
| 487 | return true; |
| 488 | } |
| 489 | |
| 490 | /// \brief Return the dual value of the given node |
| 491 | /// |
| 492 | /// This function returns the potential of the given node |
| 493 | /// |
| 494 | /// \pre init() must have been called before using this function |
| 495 | const Value pot(const Node& n) const |
| 496 | { |
| 497 | assert(_pPot); |
| 498 | return (*_pPot)[n]; |
| 499 | } |
| 500 | |
| 501 | /// \brief Return a const reference to the matching map. |
| 502 | /// |
| 503 | /// This function returns a const reference to a node map that stores |
| 504 | /// the matching edge incident to each node. |
| 505 | /// |
| 506 | /// \pre init() must have been called before using this function. |
| 507 | const MatchingMap& matchingMap() const |
| 508 | { |
| 509 | assert(_pMatchingMap); |
| 510 | return *_pMatchingMap; |
| 511 | } |
| 512 | |
| 513 | /// \brief Return the weight of the matching. |
| 514 | /// |
| 515 | /// This function returns the weight of the found matching. |
| 516 | /// |
| 517 | /// \pre init() must have been called before using this function. |
| 518 | Value matchingWeight() const |
| 519 | { |
| 520 | return _matchingWeight; |
| 521 | } |
| 522 | |
| 523 | /// \brief Return the number of edges in the matching. |
| 524 | /// |
| 525 | /// This function returns the number of edges in the matching. |
| 526 | int matchingSize() const |
| 527 | { |
| 528 | return _matchingSize; |
| 529 | } |
| 530 | |
| 531 | /// \brief Return \c true if the given edge is in the matching. |
| 532 | /// |
| 533 | /// This function returns \c true if the given edge is in the found |
| 534 | /// matching. |
| 535 | /// |
| 536 | /// \pre init() must have been been called before using this function. |
| 537 | bool matching(const Edge& e) const |
| 538 | { |
| 539 | assert(_pMatchingMap); |
| 540 | return e != INVALID && (*_pMatchingMap)[_graph.u(e)] != INVALID; |
| 541 | } |
| 542 | |
| 543 | /// \brief Return the matching edge incident to the given node. |
| 544 | /// |
| 545 | /// This function returns the matching edge incident to the |
| 546 | /// given node in the found matching or \c INVALID if the node is |
| 547 | /// not covered by the matching. |
| 548 | /// |
| 549 | /// \pre init() must have been been called before using this function. |
| 550 | Edge matching(const Node& n) const |
| 551 | { |
| 552 | assert(_pMatchingMap); |
| 553 | return (*_pMatchingMap)[n]; |
| 554 | } |
| 555 | |
| 556 | /// \brief Return the mate of the given node. |
| 557 | /// |
| 558 | /// This function returns the mate of the given node in the found |
| 559 | /// matching or \c INVALID if the node is not covered by the matching. |
| 560 | /// |
| 561 | /// \pre init() must have been been called before using this function. |
| 562 | Node mate(const Node& n) const |
| 563 | { |
| 564 | assert(_pMatchingMap); |
| 565 | |
| 566 | const Edge e = (*_pMatchingMap)[n]; |
| 567 | |
| 568 | if (e == INVALID) |
| 569 | return INVALID; |
| 570 | else |
| 571 | return _graph.oppositeNode(n, e); |
| 572 | } |
| 573 | }; |
| 574 | |
| 575 | /// \ingroup matching |
| 576 | /// |
| 577 | /// \brief Maximum weight matching in (dense) bipartite graphs |
| 578 | /// |
| 579 | /// This class provides an implementation of the classical Hungarian |
| 580 | /// algorithm for finding a maximum weight matching in an undirected |
| 581 | /// bipartite graph. This algorithm follows the primal-dual schema. |
| 582 | /// The time complexity is \f$O(n^3)\f$. In case the bipartite graph is |
| 583 | /// sparse, it is better to use \ref MaxWeightedBipartiteMatching, which |
| 584 | /// has a time complexity of \f$O(n^2 \log n)\f$ for sparse graphs. |
| 585 | /// |
| 586 | /// \tparam BGR The bipartite graph type the algorithm runs on. |
| 587 | /// \tparam WM The type edge weight map. The default type is |
| 588 | /// \ref concepts::Graph::EdgeMap "BGR::EdgeMap<int>". |
| 589 | #ifdef DOXYGEN |
| 590 | template <typename BGR, typename WM> |
| 591 | #else |
| 592 | template <typename BGR, |
| 593 | typename WM = typename BGR::template EdgeMap<int> > |
| 594 | #endif |
| 595 | class MaxWeightedDenseBipartiteMatching |
| 596 | { |
| 597 | public: |
| 598 | /// The graph type of the algorithm |
| 599 | typedef BGR BpGraph; |
| 600 | /// The type of the edge weight map |
| 601 | typedef WM WeightMap; |
| 602 | /// The value type of the edge weights |
| 603 | typedef typename WeightMap::Value Value; |
| 604 | /// The type of the matching map |
| 605 | typedef typename BpGraph:: |
| 606 | template NodeMap<typename BpGraph::Edge> MatchingMap; |
| 607 | |
| 608 | private: |
| 609 | TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph); |
| 610 | |
| 611 | typedef typename BpGraph::template NodeMap<int> IdMap; |
| 612 | typedef std::vector<int> MateVector; |
| 613 | typedef std::vector<Value> WeightVector; |
| 614 | typedef std::vector<bool> BoolVector; |
| 615 | |
| 616 | class BpEdgeT |
| 617 | { |
| 618 | private: |
| 619 | Value _weight; |
| 620 | Edge _edge; |
| 621 | |
| 622 | public: |
| 623 | BpEdgeT() |
| 624 | : _weight(0) |
| 625 | , _edge(INVALID) |
| 626 | { |
| 627 | } |
| 628 | |
| 629 | void setWeight(Value weight) |
| 630 | { |
| 631 | _weight = weight; |
| 632 | } |
| 633 | |
| 634 | Value getWeight() const |
| 635 | { |
| 636 | return _weight; |
| 637 | } |
| 638 | |
| 639 | void setEdge(const Edge& edge) |
| 640 | { |
| 641 | _edge = edge; |
| 642 | } |
| 643 | |
| 644 | const Edge& getEdge() const |
| 645 | { |
| 646 | return _edge; |
| 647 | } |
| 648 | }; |
| 649 | |
| 650 | typedef std::vector<std::vector<BpEdgeT> > AdjacencyMatrixType; |
| 651 | |
| 652 | const BpGraph& _graph; |
| 653 | const WeightMap& _weight; |
| 654 | IdMap _idMap; |
| 655 | MatchingMap _matchingMap; |
| 656 | |
| 657 | AdjacencyMatrixType _adjacencyMatrix; |
| 658 | WeightVector _labelMapX; |
| 659 | WeightVector _labelMapY; |
| 660 | MateVector _mateMapX; |
| 661 | MateVector _mateMapY; |
| 662 | int _nX; |
| 663 | int _nY; |
| 664 | int _matchingSize; |
| 665 | Value _matchingWeight; |
| 666 | |
| 667 | static const Value _minValue; |
| 668 | static const Value _maxValue; |
| 669 | |
| 670 | void buildMatchingMap() |
| 671 | { |
| 672 | _matchingWeight = 0; |
| 673 | _matchingSize = 0; |
| 674 | |
| 675 | for (int x = 0; x < _nX; x++) |
| 676 | { |
| 677 | assert(_mateMapX[x] != -1); |
| 678 | int y = _mateMapX[x]; |
| 679 | |
| 680 | const Edge& e = _adjacencyMatrix[x][y].getEdge(); |
| 681 | if (e != INVALID) |
| 682 | { |
| 683 | // only edges that where present |
| 684 | // in the original graph count in the matching |
| 685 | _matchingMap[_graph.u(e)] = _matchingMap[_graph.v(e)] = e; |
| 686 | _matchingSize++; |
| 687 | _matchingWeight += _weight[e]; |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | void updateSlacks(WeightVector& slack, int x) |
| 693 | { |
| 694 | Value lx = _labelMapX[x]; |
| 695 | for (int y = 0; y < _nY; y++) |
| 696 | { |
| 697 | // slack[y] = min_{x \in S} [l(x) + l(y) - w(x, y)] |
| 698 | Value val = lx + _labelMapY[y] - _adjacencyMatrix[x][y].getWeight(); |
| 699 | if (slack[y] > val) |
| 700 | slack[y] = val; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | void updateLabels(const BoolVector& setS, |
| 705 | const BoolVector& setT, WeightVector& slack) |
| 706 | { |
| 707 | // recall that slack[y] = min_{x \in S} [l(x) + l(y) - w(x,y)] |
| 708 | |
| 709 | // delta = min_{y \not \in T} (slack[y]) |
| 710 | Value delta = _maxValue; |
| 711 | for (int y = 0; y < _nY; y++) |
| 712 | { |
| 713 | if (!setT[y] && slack[y] < delta) |
| 714 | delta = slack[y]; |
| 715 | } |
| 716 | |
| 717 | // update labels in X |
| 718 | for (int x = 0; x < _nX; x++) |
| 719 | { |
| 720 | if (setS[x]) |
| 721 | _labelMapX[x] -= delta; |
| 722 | } |
| 723 | |
| 724 | // update labels in Y |
| 725 | for (int y = 0; y < _nY; y++) |
| 726 | { |
| 727 | if (setT[y]) |
| 728 | _labelMapY[y] += delta; |
| 729 | else |
| 730 | { |
| 731 | // update slacks |
| 732 | // remember that l(x) + l(y) hasn't changed for x \in S and y \in T |
| 733 | // the only thing that has changed is" |
| 734 | // l(x) + l(y) for x \in S and y \not \in T |
| 735 | slack[y] -= delta; |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | public: |
| 741 | /// \brief Constructor |
| 742 | /// |
| 743 | /// Constructor. |
| 744 | /// |
| 745 | /// \param graph is the input graph |
| 746 | /// \param weight are the edge weights |
| 747 | MaxWeightedDenseBipartiteMatching(const BpGraph& graph, |
| 748 | const WeightMap& weight) |
| 749 | : _graph(graph) |
| 750 | , _weight(weight) |
| 751 | , _idMap(graph, -1) |
| 752 | , _matchingMap(graph, INVALID) |
| 753 | , _adjacencyMatrix() |
| 754 | , _labelMapX() |
| 755 | , _labelMapY() |
| 756 | , _mateMapX() |
| 757 | , _mateMapY() |
| 758 | , _nX(0) |
| 759 | , _nY(0) |
| 760 | , _matchingSize(0) |
| 761 | , _matchingWeight(0) |
| 762 | { |
| 763 | |
| 764 | } |
| 765 | |
| 766 | /// \brief Initialize the algorithm |
| 767 | /// |
| 768 | /// This function initializes the algorithm. |
| 769 | void init() |
| 770 | { |
| 771 | // construct _idMap |
| 772 | int id_x = 0; |
| 773 | for (RedIt x(_graph); x != INVALID; ++x, ++id_x) |
| 774 | { |
| 775 | _idMap[x] = id_x; |
| 776 | } |
| 777 | _nX = id_x; |
| 778 | |
| 779 | int id_y = 0; |
| 780 | for (BlueIt y(_graph); y != INVALID; ++y, ++id_y) |
| 781 | { |
| 782 | _idMap[y] = id_y; |
| 783 | } |
| 784 | _nY = id_y; |
| 785 | |
| 786 | assert(_nX <= _nY); |
| 787 | |
| 788 | // init matching is empty |
| 789 | _mateMapX = MateVector(_nX, -1); |
| 790 | _mateMapY = MateVector(_nY, -1); |
| 791 | |
| 792 | // labels of nodes in X are initialized to 0, |
| 793 | // these will be updated during initAdjacencyMatrix() |
| 794 | _labelMapX = WeightVector(_nX, 0); |
| 795 | |
| 796 | // labels of nodes in Y are initialized to 0, |
| 797 | // these won't be updated during initAdjacencyMatrix() |
| 798 | _labelMapY = WeightVector(_nY, 0); |
| 799 | |
| 800 | // adjacency matrix has dimensions |X| * |Y|, |
| 801 | // every entry in this matrix is initialized to (0, INVALID) |
| 802 | _adjacencyMatrix = AdjacencyMatrixType(_nX, |
| 803 | std::vector<BpEdgeT>(_nY, BpEdgeT())); |
| 804 | |
| 805 | _matchingWeight = 0; |
| 806 | _matchingSize = 0; |
| 807 | |
| 808 | for (RedIt x(_graph); x != INVALID; ++x) |
| 809 | { |
| 810 | id_x = _idMap[x]; |
| 811 | for (IncEdgeIt e(_graph, x); e != INVALID; ++e) |
| 812 | { |
| 813 | Node y = _graph.blueNode(e); |
| 814 | id_y = _idMap[y]; |
| 815 | |
| 816 | Value w = _weight[e]; |
| 817 | |
| 818 | BpEdgeT& item = _adjacencyMatrix[id_x][id_y]; |
| 819 | item.setEdge(e); |
| 820 | item.setWeight(w); |
| 821 | |
| 822 | // label of a node x in X is initialized to maximum weight |
| 823 | // of edges incident to x |
| 824 | if (w > _labelMapX[id_x]) |
| 825 | _labelMapX[id_x] = w; |
| 826 | } |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | /// \brief Run the algorithm. |
| 831 | /// |
| 832 | /// This method runs the \c %MaxWeightedDenseBipartiteMatching algorithm. |
| 833 | /// |
| 834 | /// \note mwdbm.run() is just a shortcut of the following code. |
| 835 | /// \code |
| 836 | /// mwdbm.init() |
| 837 | /// mwdbm.start(); |
| 838 | /// \endcode |
| 839 | void run() |
| 840 | { |
| 841 | init(); |
| 842 | start(); |
| 843 | } |
| 844 | |
| 845 | /// \brief Start the algorithm |
| 846 | /// |
| 847 | /// This function starts the algorithm. |
| 848 | /// |
| 849 | /// \pre \ref init() must have been called before using this function. |
| 850 | void start() |
| 851 | { |
| 852 | // maps y in Y to x in X by which it was discovered |
| 853 | MateVector discoveredY(_nY, -1); |
| 854 | |
| 855 | // pick a root |
| 856 | for (int r = 0; r < _nX; ) |
| 857 | { |
| 858 | assert(_mateMapX[r] == -1); |
| 859 | |
| 860 | // clear slack map, i.e. set all slacks to +INF |
| 861 | WeightVector slack(_nY, _maxValue); |
| 862 | |
| 863 | // initially T = {} |
| 864 | BoolVector setT(_nY, false); |
| 865 | |
| 866 | // initially S = {r} |
| 867 | BoolVector setS(_nX, false); |
| 868 | setS[r] = true; |
| 869 | |
| 870 | std::queue<int> queue; |
| 871 | queue.push(r); |
| 872 | |
| 873 | updateSlacks(slack, r); |
| 874 | |
| 875 | bool augmented = false; |
| 876 | while (!queue.empty() && !augmented) |
| 877 | { |
| 878 | int x = queue.front(); |
| 879 | queue.pop(); |
| 880 | |
| 881 | for (int y = 0; y < _nY; y++) |
| 882 | { |
| 883 | if (!setT[y] && |
| 884 | _labelMapX[x] + _labelMapY[y] == |
| 885 | _adjacencyMatrix[x][y].getWeight()) |
| 886 | { |
| 887 | // y was (first) discovered by x |
| 888 | discoveredY[y] = x; |
| 889 | |
| 890 | if (_mateMapY[y] != -1) // y is matched, extend alternating tree |
| 891 | { |
| 892 | int z = _mateMapY[y]; |
| 893 | |
| 894 | // add z to queue if not in S |
| 895 | if (!setS[z]) |
| 896 | { |
| 897 | setS[z] = true; |
| 898 | queue.push(z); |
| 899 | updateSlacks(slack, z); |
| 900 | } |
| 901 | |
| 902 | setT[y] = true; |
| 903 | } |
| 904 | else // y is free, we have an augmenting path between r and y |
| 905 | { |
| 906 | int cx, ty, cy = y; |
| 907 | do { |
| 908 | cx = discoveredY[cy]; |
| 909 | ty = _mateMapX[cx]; |
| 910 | |
| 911 | _mateMapX[cx] = cy; |
| 912 | _mateMapY[cy] = cx; |
| 913 | |
| 914 | cy = ty; |
| 915 | } while (cx != r); |
| 916 | |
| 917 | // we found an augmenting path, |
| 918 | // start a new iteration of the first for loop |
| 919 | augmented = true; |
| 920 | break; // break for y |
| 921 | } |
| 922 | } |
| 923 | } // y \not in T such that (r,y) in E_l |
| 924 | } // queue |
| 925 | |
| 926 | if (!augmented) |
| 927 | updateLabels(setS, setT, slack); |
| 928 | else |
| 929 | r++; |
| 930 | } |
| 931 | |
| 932 | buildMatchingMap(); |
| 933 | } |
| 934 | |
| 935 | /// \brief Return the dual value of the given node |
| 936 | /// |
| 937 | /// This function returns the potential of the given node |
| 938 | /// |
| 939 | /// \pre init() must have been called before using this function |
| 940 | const Value pot(const Node& n) const |
| 941 | { |
| 942 | if (_graph.red(n)) |
| 943 | return _labelMapX[_idMap[n]]; |
| 944 | else |
| 945 | return _labelMapY[_idMap[n]]; |
| 946 | } |
| 947 | |
| 948 | /// \brief Return the weight of the matching. |
| 949 | /// |
| 950 | /// This function returns the weight of the found matching. |
| 951 | /// |
| 952 | /// \pre init() must have been called before using this function. |
| 953 | Value matchingWeight() const |
| 954 | { |
| 955 | return _matchingWeight; |
| 956 | } |
| 957 | |
| 958 | /// \brief Return the number of edges in the matching. |
| 959 | /// |
| 960 | /// This function returns the number of edges in the matching. |
| 961 | int matchingSize() const |
| 962 | { |
| 963 | return _matchingSize; |
| 964 | } |
| 965 | |
| 966 | /// \brief Return \c true if the given edge is in the matching. |
| 967 | /// |
| 968 | /// This function returns \c true if the given edge is in the found |
| 969 | /// matching. |
| 970 | /// |
| 971 | /// \pre init() must have been been called before using this function. |
| 972 | bool matching(const Edge& e) const |
| 973 | { |
| 974 | return _matchingMap[_graph.u(e)] != INVALID; |
| 975 | } |
| 976 | |
| 977 | /// \brief Return the matching edge incident to the given node. |
| 978 | /// |
| 979 | /// This function returns the matching edge incident to the |
| 980 | /// given node in the found matching or \c INVALID if the node is |
| 981 | /// not covered by the matching. |
| 982 | /// |
| 983 | /// \pre init() must have been been called before using this function. |
| 984 | Edge matching(const Node& n) const |
| 985 | { |
| 986 | return _matchingMap[n]; |
| 987 | } |
| 988 | |
| 989 | /// \brief Return the mate of the given node. |
| 990 | /// |
| 991 | /// This function returns the mate of the given node in the found |
| 992 | /// matching or \c INVALID if the node is not covered by the matching. |
| 993 | /// |
| 994 | /// \pre init() must have been been called before using this function. |
| 995 | Node mate(const Node& n) const |
| 996 | { |
| 997 | return _graph.oppositeNode(n, _matchingMap[n]); |
| 998 | } |
| 999 | |
| 1000 | /// \brief Return a const reference to the matching map. |
| 1001 | /// |
| 1002 | /// This function returns a const reference to a node map that stores |
| 1003 | /// the matching edge incident to each node. |
| 1004 | /// |
| 1005 | /// \pre init() must have been called before using this function. |
| 1006 | const MatchingMap& matchingMap() const |
| 1007 | { |
| 1008 | return _matchingMap; |
| 1009 | } |
| 1010 | |
| 1011 | /// \brief Checks whether the solution is optimal |
| 1012 | /// |
| 1013 | /// Checks using the dual solution whether the primal solution is optimal. |
| 1014 | /// |
| 1015 | /// \return \c true if the solution is optimal. |
| 1016 | bool checkOptimality() const |
| 1017 | { |
| 1018 | for (RedIt x(_graph); x != INVALID; ++x) |
| 1019 | { |
| 1020 | if (_labelMapX[_idMap[x]] < 0) |
| 1021 | return false; // feasibility of dual solution |
| 1022 | |
| 1023 | const Edge e = _matchingMap[x]; |
| 1024 | |
| 1025 | if (_mateMapX[_idMap[x]] == -1) |
| 1026 | return false; // all nodes in X must be matched in the complete graph |
| 1027 | else if (e != INVALID) |
| 1028 | { |
| 1029 | const Node y = _graph.blueNode(e); |
| 1030 | |
| 1031 | if (_matchingMap[y] != e) |
| 1032 | return false; // if x is matched via e then so must y |
| 1033 | if (_labelMapX[_idMap[x]] + _labelMapY[_idMap[y]] != |
| 1034 | _adjacencyMatrix[_idMap[x]][_idMap[y]].getWeight()) |
| 1035 | return false; // primal complementary slackness |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | for (BlueIt y(_graph); y != INVALID; ++y) |
| 1040 | { |
| 1041 | if (_labelMapY[_idMap[y]] < 0) |
| 1042 | return false; // feasibility of dual solution |
| 1043 | |
| 1044 | if (_matchingMap[y] == INVALID && _labelMapY[_idMap[y]] != 0) |
| 1045 | return false; // dual complementary slackness |
| 1046 | } |
| 1047 | |
| 1048 | for (EdgeIt e(_graph); e != INVALID; ++e) |
| 1049 | { |
| 1050 | // feasibility of dual solution |
| 1051 | if (_labelMapX[_idMap[_graph.redNode(e)]] + |
| 1052 | _labelMapY[_idMap[_graph.blueNode(e)]] < _weight[e]) |
| 1053 | return false; |
| 1054 | } |
| 1055 | |
| 1056 | return true; |
| 1057 | } |
| 1058 | }; |
| 1059 | |
| 1060 | template<typename BGR, typename WM> |
| 1061 | const typename WM::Value MaxWeightedDenseBipartiteMatching<BGR, WM>:: |
| 1062 | _maxValue = std::numeric_limits<typename WM::Value>::max(); |
| 1063 | } |
| 1064 | |
| 1065 | #endif //BP_MATCHING_H |