COIN-OR::LEMON - Graph Library

Ticket #174: fa7562ef5f8e.patch

File fa7562ef5f8e.patch, 28.5 KB (added by Alpar Juttner, 16 years ago)

Port of elevator

  • lemon/Makefile.am

    # HG changeset patch
    # User Alpar Juttner <alpar@cs.elte.hu>
    # Date 1226744633 0
    # Node ID fa7562ef5f8e2bd8fb1cd7bb159c0a727e06dd8e
    # Parent  3fb8ed1322de7eb738605582ff668a1ba0120d62
    Port Elevator from svn -r3516
     - the unify script hes also been applied
    
    diff --git a/lemon/Makefile.am b/lemon/Makefile.am
    a b  
    2727        lemon/dfs.h \
    2828        lemon/dijkstra.h \
    2929        lemon/dim2.h \
     30        lemon/elevator.h \
    3031        lemon/error.h \
    3132        lemon/full_graph.h \
    3233        lemon/graph_to_eps.h \
  • new file lemon/elevator.h

    diff --git a/lemon/elevator.h b/lemon/elevator.h
    new file mode 100644
    - +  
     1/* -*- mode: C++; indent-tabs-mode: nil; -*-
     2 *
     3 * This file is a part of LEMON, a generic C++ optimization library.
     4 *
     5 * Copyright (C) 2003-2008
     6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8 *
     9 * Permission to use, modify and distribute this software is granted
     10 * provided that this copyright notice appears in all copies. For
     11 * precise terms see the accompanying LICENSE file.
     12 *
     13 * This software is provided "AS IS" with no warranty of any kind,
     14 * express or implied, and with no claim as to its suitability for any
     15 * purpose.
     16 *
     17 */
     18
     19#ifndef LEMON_ELEVATOR_H
     20#define LEMON_ELEVATOR_H
     21
     22///\ingroup auxdat
     23///\file
     24///\brief Elevator class
     25///
     26///Elevator class implements an efficient data structure
     27///for labeling items in push-relabel type algorithms.
     28///
     29
     30#include <test/test_tools.h>
     31namespace lemon {
     32
     33  ///Class for handling "labels" in push-relabel type algorithms.
     34
     35  ///A class for handling "labels" in push-relabel type algorithms.
     36  ///
     37  ///\ingroup auxdat
     38  ///Using this class you can assign "labels" (nonnegative integer numbers)
     39  ///to the edges or nodes of a graph, manipulate and query them through
     40  ///operations typically arising in "push-relabel" type algorithms.
     41  ///
     42  ///Each item is either \em active or not, and you can also choose a
     43  ///highest level active item.
     44  ///
     45  ///\sa LinkedElevator
     46  ///
     47  ///\param Graph the underlying graph type
     48  ///\param Item Type of the items the data is assigned to (Graph::Node,
     49  ///Graph::Edge, Graph::UEdge)
     50  template<class Graph, class Item>
     51  class Elevator
     52  {
     53  public:
     54
     55    typedef Item Key;
     56    typedef int Value;
     57
     58  private:
     59
     60    typedef typename std::vector<Item>::iterator Vit;
     61    typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap;
     62    typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap;
     63
     64    const Graph &_g;
     65    int _max_level;
     66    int _item_num;
     67    VitMap _where;
     68    IntMap _level;
     69    std::vector<Item> _items;
     70    std::vector<Vit> _first;
     71    std::vector<Vit> _last_active;
     72
     73    int _highest_active;
     74
     75    void copy(Item i, Vit p)
     76    {
     77      _where[*p=i]=p;
     78    }
     79    void copy(Vit s, Vit p)
     80    {
     81      if(s!=p)
     82        {
     83          Item i=*s;
     84          *p=i;
     85          _where[i]=p;
     86        }
     87    }
     88    void swap(Vit i, Vit j)
     89    {
     90      Item ti=*i;
     91      Vit ct = _where[ti];
     92      _where[ti]=_where[*i=*j];
     93      _where[*j]=ct;
     94      *j=ti;
     95    }
     96
     97  public:
     98
     99    ///Constructor with given maximum level.
     100
     101    ///Constructor with given maximum level.
     102    ///
     103    ///\param g The underlying graph
     104    ///\param max_level Set the range of the possible labels to
     105    ///[0...\c max_level]
     106    Elevator(const Graph &g,int max_level) :
     107      _g(g),
     108      _max_level(max_level),
     109      _item_num(_max_level),
     110      _where(g),
     111      _level(g,0),
     112      _items(_max_level),
     113      _first(_max_level+2),
     114      _last_active(_max_level+2),
     115      _highest_active(-1) {}
     116    ///Constructor.
     117
     118    ///Constructor.
     119    ///
     120    ///\param g The underlying graph
     121    ///The range of the possible labels is [0...\c max_level],
     122    ///where \c max_level is equal to the number of labeled items in the graph.
     123    Elevator(const Graph &g) :
     124      _g(g),
     125      _max_level(countItems<Graph, Item>(g)),
     126      _item_num(_max_level),
     127      _where(g),
     128      _level(g,0),
     129      _items(_max_level),
     130      _first(_max_level+2),
     131      _last_active(_max_level+2),
     132      _highest_active(-1)
     133    {
     134    }
     135
     136    ///Activate item \c i.
     137
     138    ///Activate item \c i.
     139    ///\pre Item \c i shouldn't be active before.
     140    void activate(Item i)
     141    {
     142      const int l=_level[i];
     143      swap(_where[i],++_last_active[l]);
     144      if(l>_highest_active) _highest_active=l;
     145    }
     146
     147    ///Deactivate item \c i.
     148
     149    ///Deactivate item \c i.
     150    ///\pre Item \c i must be active before.
     151    void deactivate(Item i)
     152    {
     153      swap(_where[i],_last_active[_level[i]]--);
     154      while(_highest_active>=0 &&
     155            _last_active[_highest_active]<_first[_highest_active])
     156        _highest_active--;
     157    }
     158
     159    ///Query whether item \c i is active
     160    bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
     161
     162    ///Return the level of item \c i.
     163    int operator[](Item i) const { return _level[i]; }
     164
     165    ///Return the number of items on level \c l.
     166    int onLevel(int l) const
     167    {
     168      return _first[l+1]-_first[l];
     169    }
     170    ///Return true if the level is empty.
     171    bool emptyLevel(int l) const
     172    {
     173      return _first[l+1]-_first[l]==0;
     174    }
     175    ///Return the number of items above level \c l.
     176    int aboveLevel(int l) const
     177    {
     178      return _first[_max_level+1]-_first[l+1];
     179    }
     180    ///Return the number of active items on level \c l.
     181    int activesOnLevel(int l) const
     182    {
     183      return _last_active[l]-_first[l]+1;
     184    }
     185    ///Return true if there is not active item on level \c l.
     186    bool activeFree(int l) const
     187    {
     188      return _last_active[l]<_first[l];
     189    }
     190    ///Return the maximum allowed level.
     191    int maxLevel() const
     192    {
     193      return _max_level;
     194    }
     195
     196    ///\name Highest Active Item
     197    ///Functions for working with the highest level
     198    ///active item.
     199
     200    ///@{
     201
     202    ///Return a highest level active item.
     203
     204    ///Return a highest level active item.
     205    ///
     206    ///\return the highest level active item or INVALID if there is no active
     207    ///item.
     208    Item highestActive() const
     209    {
     210      return _highest_active>=0?*_last_active[_highest_active]:INVALID;
     211    }
     212
     213    ///Return a highest active level.
     214
     215    ///Return a highest active level.
     216    ///
     217    ///\return the level of the highest active item or -1 if there is no active
     218    ///item.
     219    int highestActiveLevel() const
     220    {
     221      return _highest_active;
     222    }
     223
     224    ///Lift the highest active item by one.
     225
     226    ///Lift the item returned by highestActive() by one.
     227    ///
     228    void liftHighestActive()
     229    {
     230      ++_level[*_last_active[_highest_active]];
     231      swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
     232      --_first[++_highest_active];
     233    }
     234
     235    ///Lift the highest active item.
     236
     237    ///Lift the item returned by highestActive() to level \c new_level.
     238    ///
     239    ///\warning \c new_level must be strictly higher
     240    ///than the current level.
     241    ///
     242    void liftHighestActive(int new_level)
     243    {
     244      const Item li = *_last_active[_highest_active];
     245
     246      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
     247      for(int l=_highest_active+1;l<new_level;l++)
     248        {
     249          copy(--_first[l+1],_first[l]);
     250          --_last_active[l];
     251        }
     252      copy(li,_first[new_level]);
     253      _level[li]=new_level;
     254      _highest_active=new_level;
     255    }
     256
     257    ///Lift the highest active item.
     258
     259    ///Lift the item returned by highestActive() to the top level and
     260    ///deactivates it.
     261    ///
     262    ///\warning \c new_level must be strictly higher
     263    ///than the current level.
     264    ///
     265    void liftHighestActiveToTop()
     266    {
     267      const Item li = *_last_active[_highest_active];
     268
     269      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
     270      for(int l=_highest_active+1;l<_max_level;l++)
     271        {
     272          copy(--_first[l+1],_first[l]);
     273          --_last_active[l];
     274        }
     275      copy(li,_first[_max_level]);
     276      --_last_active[_max_level];
     277      _level[li]=_max_level;
     278
     279      while(_highest_active>=0 &&
     280            _last_active[_highest_active]<_first[_highest_active])
     281        _highest_active--;
     282    }
     283
     284    ///@}
     285
     286    ///\name Active Item on Certain Level
     287    ///Functions for working with the active items.
     288
     289    ///@{
     290
     291    ///Returns an active item on level \c l.
     292
     293    ///Returns an active item on level \c l.
     294    ///
     295    ///Returns an active item on level \c l or \ref INVALID if there is no such
     296    ///an item. (\c l must be from the range [0...\c max_level].
     297    Item activeOn(int l) const
     298    {
     299      return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
     300    }
     301
     302    ///Lifts the active item returned by \c activeOn() member function.
     303
     304    ///Lifts the active item returned by \c activeOn() member function
     305    ///by one.
     306    Item liftActiveOn(int level)
     307    {
     308      ++_level[*_last_active[level]];
     309      swap(_last_active[level]--, --_first[level+1]);
     310      if (level+1>_highest_active) ++_highest_active;
     311    }
     312
     313    ///Lifts the active item returned by \c activeOn() member function.
     314
     315    ///Lifts the active item returned by \c activeOn() member function
     316    ///to the given level.
     317    void liftActiveOn(int level, int new_level)
     318    {
     319      const Item ai = *_last_active[level];
     320
     321      copy(--_first[level+1], _last_active[level]--);
     322      for(int l=level+1;l<new_level;l++)
     323        {
     324          copy(_last_active[l],_first[l]);
     325          copy(--_first[l+1], _last_active[l]--);
     326        }
     327      copy(ai,_first[new_level]);
     328      _level[ai]=new_level;
     329      if (new_level>_highest_active) _highest_active=new_level;
     330    }
     331
     332    ///Lifts the active item returned by \c activeOn() member function.
     333
     334    ///Lifts the active item returned by \c activeOn() member function
     335    ///to the top level.
     336    void liftActiveToTop(int level)
     337    {
     338      const Item ai = *_last_active[level];
     339
     340      copy(--_first[level+1],_last_active[level]--);
     341      for(int l=level+1;l<_max_level;l++)
     342        {
     343          copy(_last_active[l],_first[l]);
     344          copy(--_first[l+1], _last_active[l]--);
     345        }
     346      copy(ai,_first[_max_level]);
     347      --_last_active[_max_level];
     348      _level[ai]=_max_level;
     349
     350      if (_highest_active==level) {
     351        while(_highest_active>=0 &&
     352              _last_active[_highest_active]<_first[_highest_active])
     353          _highest_active--;
     354      }
     355    }
     356
     357    ///@}
     358
     359    ///Lift an active item to a higher level.
     360
     361    ///Lift an active item to a higher level.
     362    ///\param i The item to be lifted. It must be active.
     363    ///\param new_level The new level of \c i. It must be strictly higher
     364    ///than the current level.
     365    ///
     366    void lift(Item i, int new_level)
     367    {
     368      const int lo = _level[i];
     369      const Vit w = _where[i];
     370
     371      copy(_last_active[lo],w);
     372      copy(--_first[lo+1],_last_active[lo]--);
     373      for(int l=lo+1;l<new_level;l++)
     374        {
     375          copy(_last_active[l],_first[l]);
     376          copy(--_first[l+1],_last_active[l]--);
     377        }
     378      copy(i,_first[new_level]);
     379      _level[i]=new_level;
     380      if(new_level>_highest_active) _highest_active=new_level;
     381    }
     382
     383    ///Mark the node as it did not reach the max level
     384
     385    ///Mark the node as it did not reach the max level. It sets the
     386    ///level to the under the max level value. The node will be never
     387    ///more activated because the push operation from the maximum
     388    ///level is forbidden in the push-relabel algorithms. The node
     389    ///should be lifted previously to the top level.
     390    void markToBottom(Item i) {
     391      _level[i] = _max_level - 1;
     392    }
     393
     394    ///Lift all nodes on and above a level to the top (and deactivate them).
     395
     396    ///This function lifts all nodes on and above level \c l to \c
     397    ///maxLevel(), and also deactivates them.
     398    void liftToTop(int l)
     399    {
     400      const Vit f=_first[l];
     401      const Vit tl=_first[_max_level];
     402      for(Vit i=f;i!=tl;++i)
     403        _level[*i]=_max_level;
     404      for(int i=l;i<=_max_level;i++)
     405        {
     406          _first[i]=f;
     407          _last_active[i]=f-1;
     408        }
     409      for(_highest_active=l-1;
     410          _highest_active>=0 &&
     411            _last_active[_highest_active]<_first[_highest_active];
     412          _highest_active--) ;
     413    }
     414
     415  private:
     416    int _init_lev;
     417    Vit _init_num;
     418
     419  public:
     420
     421    ///\name Initialization
     422    ///Using this function you can initialize the levels of the item.
     423    ///\n
     424    ///This initializatios is started with calling \c initStart().
     425    ///Then the
     426    ///items should be listed levels by levels statring with the lowest one
     427    ///(with level 0). This is done by using \c initAddItem()
     428    ///and \c initNewLevel(). Finally \c initFinish() must be called.
     429    ///The items not listed will be put on the highest level.
     430    ///@{
     431
     432    ///Start the initialization process.
     433
     434    void initStart()
     435    {
     436      _init_lev=0;
     437      _init_num=_items.begin();
     438      _first[0]=_items.begin();
     439      _last_active[0]=_items.begin()-1;
     440      Vit n=_items.begin();
     441      for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
     442        {
     443          *n=i;
     444          _where[i]=n;
     445          _level[i]=_max_level;
     446          ++n;
     447        }
     448    }
     449
     450    ///Add an item to the current level.
     451
     452    void initAddItem(Item i)
     453    {
     454     swap(_where[i],_init_num);
     455      _level[i]=_init_lev;
     456      ++_init_num;
     457    }
     458
     459    ///Start a new level.
     460
     461    ///Start a new level.
     462    ///It shouldn't be used before the items on level 0 are listed.
     463    void initNewLevel()
     464    {
     465      _init_lev++;
     466      _first[_init_lev]=_init_num;
     467      _last_active[_init_lev]=_init_num-1;
     468    }
     469
     470    ///Finalize the initialization process.
     471
     472    void initFinish()
     473    {
     474      for(_init_lev++;_init_lev<=_max_level;_init_lev++)
     475        {
     476          _first[_init_lev]=_init_num;
     477          _last_active[_init_lev]=_init_num-1;
     478        }
     479      _first[_max_level+1]=_items.begin()+_item_num;
     480      _last_active[_max_level+1]=_items.begin()+_item_num-1;
     481      _highest_active = -1;
     482    }
     483
     484    ///@}
     485
     486  };
     487
     488  ///Class for handling "labels" in push-relabel type algorithms.
     489
     490  ///A class for handling "labels" in push-relabel type algorithms.
     491  ///
     492  ///\ingroup auxdat
     493  ///Using this class you can assign "labels" (nonnegative integer numbers)
     494  ///to the edges or nodes of a graph, manipulate and query them through
     495  ///operations typically arising in "push-relabel" type algorithms.
     496  ///
     497  ///Each item is either \em active or not, and you can also choose a
     498  ///highest level active item.
     499  ///
     500  ///\sa Elevator
     501  ///
     502  ///\param Graph the underlying graph type
     503  ///\param Item Type of the items the data is assigned to (Graph::Node,
     504  ///Graph::Edge, Graph::UEdge)
     505  template <class Graph, class Item>
     506  class LinkedElevator {
     507  public:
     508
     509    typedef Item Key;
     510    typedef int Value;
     511
     512  private:
     513
     514    typedef typename ItemSetTraits<Graph,Item>::
     515    template Map<Item>::Type ItemMap;
     516    typedef typename ItemSetTraits<Graph,Item>::
     517    template Map<int>::Type IntMap;
     518    typedef typename ItemSetTraits<Graph,Item>::
     519    template Map<bool>::Type BoolMap;
     520
     521    const Graph &_graph;
     522    int _max_level;
     523    int _item_num;
     524    std::vector<Item> _first, _last;
     525    ItemMap _prev, _next;
     526    int _highest_active;
     527    IntMap _level;
     528    BoolMap _active;
     529
     530  public:
     531    ///Constructor with given maximum level.
     532
     533    ///Constructor with given maximum level.
     534    ///
     535    ///\param g The underlying graph
     536    ///\param max_level Set the range of the possible labels to
     537    ///[0...\c max_level]
     538    LinkedElevator(const Graph& graph, int max_level)
     539      : _graph(graph), _max_level(max_level), _item_num(_max_level),
     540        _first(_max_level + 1), _last(_max_level + 1),
     541        _prev(graph), _next(graph),
     542        _highest_active(-1), _level(graph), _active(graph) {}
     543
     544    ///Constructor.
     545
     546    ///Constructor.
     547    ///
     548    ///\param g The underlying graph
     549    ///The range of the possible labels is [0...\c max_level],
     550    ///where \c max_level is equal to the number of labeled items in the graph.
     551    LinkedElevator(const Graph& graph)
     552      : _graph(graph), _max_level(countItems<Graph, Item>(graph)),
     553        _item_num(_max_level),
     554        _first(_max_level + 1), _last(_max_level + 1),
     555        _prev(graph, INVALID), _next(graph, INVALID),
     556        _highest_active(-1), _level(graph), _active(graph) {}
     557
     558
     559    ///Activate item \c i.
     560
     561    ///Activate item \c i.
     562    ///\pre Item \c i shouldn't be active before.
     563    void activate(Item i) {
     564      _active.set(i, true);
     565
     566      int level = _level[i];
     567      if (level > _highest_active) {
     568        _highest_active = level;
     569      }
     570
     571      if (_prev[i] == INVALID || _active[_prev[i]]) return;
     572      //unlace
     573      _next.set(_prev[i], _next[i]);
     574      if (_next[i] != INVALID) {
     575        _prev.set(_next[i], _prev[i]);
     576      } else {
     577        _last[level] = _prev[i];
     578      }
     579      //lace
     580      _next.set(i, _first[level]);
     581      _prev.set(_first[level], i);
     582      _prev.set(i, INVALID);
     583      _first[level] = i;
     584
     585    }
     586
     587    ///Deactivate item \c i.
     588
     589    ///Deactivate item \c i.
     590    ///\pre Item \c i must be active before.
     591    void deactivate(Item i) {
     592      _active.set(i, false);
     593      int level = _level[i];
     594
     595      if (_next[i] == INVALID || !_active[_next[i]])
     596        goto find_highest_level;
     597
     598      //unlace
     599      _prev.set(_next[i], _prev[i]);
     600      if (_prev[i] != INVALID) {
     601        _next.set(_prev[i], _next[i]);
     602      } else {
     603        _first[_level[i]] = _next[i];
     604      }
     605      //lace
     606      _prev.set(i, _last[level]);
     607      _next.set(_last[level], i);
     608      _next.set(i, INVALID);
     609      _last[level] = i;
     610
     611    find_highest_level:
     612      if (level == _highest_active) {
     613        while (_highest_active >= 0 && activeFree(_highest_active))
     614          --_highest_active;
     615      }
     616    }
     617
     618    ///Query whether item \c i is active
     619    bool active(Item i) const { return _active[i]; }
     620
     621    ///Return the level of item \c i.
     622    int operator[](Item i) const { return _level[i]; }
     623
     624    ///Return the number of items on level \c l.
     625    int onLevel(int l) const {
     626      int num = 0;
     627      Item n = _first[l];
     628      while (n != INVALID) {
     629        ++num;
     630        n = _next[n];
     631      }
     632      return num;
     633    }
     634
     635    ///Return true if the level is empty.
     636    bool emptyLevel(int l) const {
     637      return _first[l] == INVALID;
     638    }
     639
     640    ///Return the number of items above level \c l.
     641    int aboveLevel(int l) const {
     642      int num = 0;
     643      for (int level = l + 1; level < _max_level; ++level)
     644        num += onLevel(level);
     645      return num;
     646    }
     647
     648    ///Return the number of active items on level \c l.
     649    int activesOnLevel(int l) const {
     650      int num = 0;
     651      Item n = _first[l];
     652      while (n != INVALID && _active[n]) {
     653        ++num;
     654        n = _next[n];
     655      }
     656      return num;
     657    }
     658
     659    ///Return true if there is not active item on level \c l.
     660    bool activeFree(int l) const {
     661      return _first[l] == INVALID || !_active[_first[l]];
     662    }
     663
     664    ///Return the maximum allowed level.
     665    int maxLevel() const {
     666      return _max_level;
     667    }
     668
     669    ///\name Highest Active Item
     670    ///Functions for working with the highest level
     671    ///active item.
     672
     673    ///@{
     674
     675    ///Return a highest level active item.
     676
     677    ///Return a highest level active item.
     678    ///
     679    ///\return the highest level active item or INVALID if there is no
     680    ///active item.
     681    Item highestActive() const {
     682      return _highest_active >= 0 ? _first[_highest_active] : INVALID;
     683    }
     684
     685    ///Return a highest active level.
     686
     687    ///Return a highest active level.
     688    ///
     689    ///\return the level of the highest active item or -1 if there is
     690    ///no active item.
     691    int highestActiveLevel() const {
     692      return _highest_active;
     693    }
     694
     695    ///Lift the highest active item by one.
     696
     697    ///Lift the item returned by highestActive() by one.
     698    ///
     699    void liftHighestActive() {
     700      Item i = _first[_highest_active];
     701      if (_next[i] != INVALID) {
     702        _prev.set(_next[i], INVALID);
     703        _first[_highest_active] = _next[i];
     704      } else {
     705        _first[_highest_active] = INVALID;
     706        _last[_highest_active] = INVALID;
     707      }
     708      _level.set(i, ++_highest_active);
     709      if (_first[_highest_active] == INVALID) {
     710        _first[_highest_active] = i;
     711        _last[_highest_active] = i;
     712        _prev.set(i, INVALID);
     713        _next.set(i, INVALID);
     714      } else {
     715        _prev.set(_first[_highest_active], i);
     716        _next.set(i, _first[_highest_active]);
     717        _first[_highest_active] = i;
     718      }
     719    }
     720
     721    ///Lift the highest active item.
     722
     723    ///Lift the item returned by highestActive() to level \c new_level.
     724    ///
     725    ///\warning \c new_level must be strictly higher
     726    ///than the current level.
     727    ///
     728    void liftHighestActive(int new_level) {
     729      Item i = _first[_highest_active];
     730      if (_next[i] != INVALID) {
     731        _prev.set(_next[i], INVALID);
     732        _first[_highest_active] = _next[i];
     733      } else {
     734        _first[_highest_active] = INVALID;
     735        _last[_highest_active] = INVALID;
     736      }
     737      _level.set(i, _highest_active = new_level);
     738      if (_first[_highest_active] == INVALID) {
     739        _first[_highest_active] = _last[_highest_active] = i;
     740        _prev.set(i, INVALID);
     741        _next.set(i, INVALID);
     742      } else {
     743        _prev.set(_first[_highest_active], i);
     744        _next.set(i, _first[_highest_active]);
     745        _first[_highest_active] = i;
     746      }
     747    }
     748
     749    ///Lift the highest active to top.
     750
     751    ///Lift the item returned by highestActive() to the top level and
     752    ///deactivates the node.
     753    ///
     754    void liftHighestActiveToTop() {
     755      Item i = _first[_highest_active];
     756      _level.set(i, _max_level);
     757      if (_next[i] != INVALID) {
     758        _prev.set(_next[i], INVALID);
     759        _first[_highest_active] = _next[i];
     760      } else {
     761        _first[_highest_active] = INVALID;
     762        _last[_highest_active] = INVALID;
     763      }
     764      while (_highest_active >= 0 && activeFree(_highest_active))
     765        --_highest_active;
     766    }
     767
     768    ///@}
     769
     770    ///\name Active Item on Certain Level
     771    ///Functions for working with the active items.
     772
     773    ///@{
     774
     775    ///Returns an active item on level \c l.
     776
     777    ///Returns an active item on level \c l.
     778    ///
     779    ///Returns an active item on level \c l or \ref INVALID if there is no such
     780    ///an item. (\c l must be from the range [0...\c max_level].
     781    Item activeOn(int l) const
     782    {
     783      return _active[_first[l]] ? _first[l] : INVALID;
     784    }
     785
     786    ///Lifts the active item returned by \c activeOn() member function.
     787
     788    ///Lifts the active item returned by \c activeOn() member function
     789    ///by one.
     790    Item liftActiveOn(int l)
     791    {
     792      Item i = _first[l];
     793      if (_next[i] != INVALID) {
     794        _prev.set(_next[i], INVALID);
     795        _first[l] = _next[i];
     796      } else {
     797        _first[l] = INVALID;
     798        _last[l] = INVALID;
     799      }
     800      _level.set(i, ++l);
     801      if (_first[l] == INVALID) {
     802        _first[l] = _last[l] = i;
     803        _prev.set(i, INVALID);
     804        _next.set(i, INVALID);
     805      } else {
     806        _prev.set(_first[l], i);
     807        _next.set(i, _first[l]);
     808        _first[l] = i;
     809      }
     810      if (_highest_active < l) {
     811        _highest_active = l;
     812      }
     813    }
     814
     815    /// \brief Lifts the active item returned by \c activeOn() member function.
     816    ///
     817    /// Lifts the active item returned by \c activeOn() member function
     818    /// to the given level.
     819    void liftActiveOn(int l, int new_level)
     820    {
     821      Item i = _first[l];
     822      if (_next[i] != INVALID) {
     823        _prev.set(_next[i], INVALID);
     824        _first[l] = _next[i];
     825      } else {
     826        _first[l] = INVALID;
     827        _last[l] = INVALID;
     828      }
     829      _level.set(i, l = new_level);
     830      if (_first[l] == INVALID) {
     831        _first[l] = _last[l] = i;
     832        _prev.set(i, INVALID);
     833        _next.set(i, INVALID);
     834      } else {
     835        _prev.set(_first[l], i);
     836        _next.set(i, _first[l]);
     837        _first[l] = i;
     838      }
     839      if (_highest_active < l) {
     840        _highest_active = l;
     841      }
     842    }
     843
     844    ///Lifts the active item returned by \c activeOn() member function.
     845
     846    ///Lifts the active item returned by \c activeOn() member function
     847    ///to the top level.
     848    void liftActiveToTop(int l)
     849    {
     850      Item i = _first[l];
     851      if (_next[i] != INVALID) {
     852        _prev.set(_next[i], INVALID);
     853        _first[l] = _next[i];
     854      } else {
     855        _first[l] = INVALID;
     856        _last[l] = INVALID;
     857      }
     858      _level.set(i, _max_level);
     859      if (l == _highest_active) {
     860        while (_highest_active >= 0 && activeFree(_highest_active))
     861          --_highest_active;
     862      }
     863    }
     864
     865    ///@}
     866
     867    /// \brief Lift an active item to a higher level.
     868    ///
     869    /// Lift an active item to a higher level.
     870    /// \param i The item to be lifted. It must be active.
     871    /// \param new_level The new level of \c i. It must be strictly higher
     872    /// than the current level.
     873    ///
     874    void lift(Item i, int new_level) {
     875      if (_next[i] != INVALID) {
     876        _prev.set(_next[i], _prev[i]);
     877      } else {
     878        _last[new_level] = _prev[i];
     879      }
     880      if (_prev[i] != INVALID) {
     881        _next.set(_prev[i], _next[i]);
     882      } else {
     883        _first[new_level] = _next[i];
     884      }
     885      _level.set(i, new_level);
     886      if (_first[new_level] == INVALID) {
     887        _first[new_level] = _last[new_level] = i;
     888        _prev.set(i, INVALID);
     889        _next.set(i, INVALID);
     890      } else {
     891        _prev.set(_first[new_level], i);
     892        _next.set(i, _first[new_level]);
     893        _first[new_level] = i;
     894      }
     895      if (_highest_active < new_level) {
     896        _highest_active = new_level;
     897      }
     898    }
     899
     900    ///Mark the node as it did not reach the max level
     901
     902    ///Mark the node as it did not reach the max level. It sets the
     903    ///level to the under the max level value. The node will be never
     904    ///more activated because the push operation from the maximum
     905    ///level is forbidden in the push-relabel algorithms. The node
     906    ///should be lifted previously to the top level.
     907    void markToBottom(Item i) {
     908      _level.set(i, _max_level - 1);
     909    }
     910
     911    ///Lift all nodes on and above a level to the top (and deactivate them).
     912
     913    ///This function lifts all nodes on and above level \c l to \c
     914    ///maxLevel(), and also deactivates them.
     915    void liftToTop(int l)  {
     916      for (int i = l + 1; _first[i] != INVALID; ++i) {
     917        Item n = _first[i];
     918        while (n != INVALID) {
     919          _level.set(n, _max_level);
     920          n = _next[n];
     921        }
     922        _first[i] = INVALID;
     923        _last[i] = INVALID;
     924      }
     925      if (_highest_active > l - 1) {
     926        _highest_active = l - 1;
     927        while (_highest_active >= 0 && activeFree(_highest_active))
     928          --_highest_active;
     929      }
     930    }
     931
     932  private:
     933
     934    int _init_level;
     935
     936  public:
     937
     938    ///\name Initialization
     939    ///Using this function you can initialize the levels of the item.
     940    ///\n
     941    ///This initializatios is started with calling \c initStart().
     942    ///Then the
     943    ///items should be listed levels by levels statring with the lowest one
     944    ///(with level 0). This is done by using \c initAddItem()
     945    ///and \c initNewLevel(). Finally \c initFinish() must be called.
     946    ///The items not listed will be put on the highest level.
     947    ///@{
     948
     949    ///Start the initialization process.
     950
     951    void initStart() {
     952
     953      for (int i = 0; i <= _max_level; ++i) {
     954        _first[i] = _last[i] = INVALID;
     955      }
     956      _init_level = 0;
     957      for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph);
     958          i != INVALID; ++i) {
     959        _level.set(i, _max_level);
     960        _active.set(i, false);
     961      }
     962    }
     963
     964    ///Add an item to the current level.
     965
     966    void initAddItem(Item i) {
     967      _level.set(i, _init_level);
     968      if (_last[_init_level] == INVALID) {
     969        _first[_init_level] = i;
     970        _last[_init_level] = i;
     971        _prev.set(i, INVALID);
     972        _next.set(i, INVALID);
     973      } else {
     974        _prev.set(i, _last[_init_level]);
     975        _next.set(i, INVALID);
     976        _next.set(_last[_init_level], i);
     977        _last[_init_level] = i;
     978      }
     979    }
     980
     981    ///Start a new level.
     982
     983    ///Start a new level.
     984    ///It shouldn't be used before the items on level 0 are listed.
     985    void initNewLevel() {
     986      ++_init_level;
     987    }
     988
     989    ///Finalize the initialization process.
     990
     991    void initFinish() {
     992      _highest_active = -1;
     993    }
     994
     995    ///@}
     996
     997  };
     998
     999
     1000} //END OF NAMESPACE LEMON
     1001
     1002#endif
     1003