| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2008 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_ELEVATOR_H |
| 20 | #define LEMON_ELEVATOR_H |
| 21 | |
| 22 | ///\ingroup auxdat |
| 23 | ///\file |
| 24 | ///\brief Elevator class |
| 25 | /// |
| 26 | ///Elevator class implements an efficient data structure |
| 27 | ///for labeling items in push-relabel type algorithms. |
| 28 | /// |
| 29 | |
| 30 | #include <test/test_tools.h> |
| 31 | namespace lemon { |
| 32 | |
| 33 | ///Class for handling "labels" in push-relabel type algorithms. |
| 34 | |
| 35 | ///A class for handling "labels" in push-relabel type algorithms. |
| 36 | /// |
| 37 | ///\ingroup auxdat |
| 38 | ///Using this class you can assign "labels" (nonnegative integer numbers) |
| 39 | ///to the edges or nodes of a graph, manipulate and query them through |
| 40 | ///operations typically arising in "push-relabel" type algorithms. |
| 41 | /// |
| 42 | ///Each item is either \em active or not, and you can also choose a |
| 43 | ///highest level active item. |
| 44 | /// |
| 45 | ///\sa LinkedElevator |
| 46 | /// |
| 47 | ///\param Graph the underlying graph type |
| 48 | ///\param Item Type of the items the data is assigned to (Graph::Node, |
| 49 | ///Graph::Edge, Graph::UEdge) |
| 50 | template<class Graph, class Item> |
| 51 | class Elevator |
| 52 | { |
| 53 | public: |
| 54 | |
| 55 | typedef Item Key; |
| 56 | typedef int Value; |
| 57 | |
| 58 | private: |
| 59 | |
| 60 | typedef typename std::vector<Item>::iterator Vit; |
| 61 | typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
| 62 | typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
| 63 | |
| 64 | const Graph &_g; |
| 65 | int _max_level; |
| 66 | int _item_num; |
| 67 | VitMap _where; |
| 68 | IntMap _level; |
| 69 | std::vector<Item> _items; |
| 70 | std::vector<Vit> _first; |
| 71 | std::vector<Vit> _last_active; |
| 72 | |
| 73 | int _highest_active; |
| 74 | |
| 75 | void copy(Item i, Vit p) |
| 76 | { |
| 77 | _where[*p=i]=p; |
| 78 | } |
| 79 | void copy(Vit s, Vit p) |
| 80 | { |
| 81 | if(s!=p) |
| 82 | { |
| 83 | Item i=*s; |
| 84 | *p=i; |
| 85 | _where[i]=p; |
| 86 | } |
| 87 | } |
| 88 | void swap(Vit i, Vit j) |
| 89 | { |
| 90 | Item ti=*i; |
| 91 | Vit ct = _where[ti]; |
| 92 | _where[ti]=_where[*i=*j]; |
| 93 | _where[*j]=ct; |
| 94 | *j=ti; |
| 95 | } |
| 96 | |
| 97 | public: |
| 98 | |
| 99 | ///Constructor with given maximum level. |
| 100 | |
| 101 | ///Constructor with given maximum level. |
| 102 | /// |
| 103 | ///\param g The underlying graph |
| 104 | ///\param max_level Set the range of the possible labels to |
| 105 | ///[0...\c max_level] |
| 106 | Elevator(const Graph &g,int max_level) : |
| 107 | _g(g), |
| 108 | _max_level(max_level), |
| 109 | _item_num(_max_level), |
| 110 | _where(g), |
| 111 | _level(g,0), |
| 112 | _items(_max_level), |
| 113 | _first(_max_level+2), |
| 114 | _last_active(_max_level+2), |
| 115 | _highest_active(-1) {} |
| 116 | ///Constructor. |
| 117 | |
| 118 | ///Constructor. |
| 119 | /// |
| 120 | ///\param g The underlying graph |
| 121 | ///The range of the possible labels is [0...\c max_level], |
| 122 | ///where \c max_level is equal to the number of labeled items in the graph. |
| 123 | Elevator(const Graph &g) : |
| 124 | _g(g), |
| 125 | _max_level(countItems<Graph, Item>(g)), |
| 126 | _item_num(_max_level), |
| 127 | _where(g), |
| 128 | _level(g,0), |
| 129 | _items(_max_level), |
| 130 | _first(_max_level+2), |
| 131 | _last_active(_max_level+2), |
| 132 | _highest_active(-1) |
| 133 | { |
| 134 | } |
| 135 | |
| 136 | ///Activate item \c i. |
| 137 | |
| 138 | ///Activate item \c i. |
| 139 | ///\pre Item \c i shouldn't be active before. |
| 140 | void activate(Item i) |
| 141 | { |
| 142 | const int l=_level[i]; |
| 143 | swap(_where[i],++_last_active[l]); |
| 144 | if(l>_highest_active) _highest_active=l; |
| 145 | } |
| 146 | |
| 147 | ///Deactivate item \c i. |
| 148 | |
| 149 | ///Deactivate item \c i. |
| 150 | ///\pre Item \c i must be active before. |
| 151 | void deactivate(Item i) |
| 152 | { |
| 153 | swap(_where[i],_last_active[_level[i]]--); |
| 154 | while(_highest_active>=0 && |
| 155 | _last_active[_highest_active]<_first[_highest_active]) |
| 156 | _highest_active--; |
| 157 | } |
| 158 | |
| 159 | ///Query whether item \c i is active |
| 160 | bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; } |
| 161 | |
| 162 | ///Return the level of item \c i. |
| 163 | int operator[](Item i) const { return _level[i]; } |
| 164 | |
| 165 | ///Return the number of items on level \c l. |
| 166 | int onLevel(int l) const |
| 167 | { |
| 168 | return _first[l+1]-_first[l]; |
| 169 | } |
| 170 | ///Return true if the level is empty. |
| 171 | bool emptyLevel(int l) const |
| 172 | { |
| 173 | return _first[l+1]-_first[l]==0; |
| 174 | } |
| 175 | ///Return the number of items above level \c l. |
| 176 | int aboveLevel(int l) const |
| 177 | { |
| 178 | return _first[_max_level+1]-_first[l+1]; |
| 179 | } |
| 180 | ///Return the number of active items on level \c l. |
| 181 | int activesOnLevel(int l) const |
| 182 | { |
| 183 | return _last_active[l]-_first[l]+1; |
| 184 | } |
| 185 | ///Return true if there is not active item on level \c l. |
| 186 | bool activeFree(int l) const |
| 187 | { |
| 188 | return _last_active[l]<_first[l]; |
| 189 | } |
| 190 | ///Return the maximum allowed level. |
| 191 | int maxLevel() const |
| 192 | { |
| 193 | return _max_level; |
| 194 | } |
| 195 | |
| 196 | ///\name Highest Active Item |
| 197 | ///Functions for working with the highest level |
| 198 | ///active item. |
| 199 | |
| 200 | ///@{ |
| 201 | |
| 202 | ///Return a highest level active item. |
| 203 | |
| 204 | ///Return a highest level active item. |
| 205 | /// |
| 206 | ///\return the highest level active item or INVALID if there is no active |
| 207 | ///item. |
| 208 | Item highestActive() const |
| 209 | { |
| 210 | return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
| 211 | } |
| 212 | |
| 213 | ///Return a highest active level. |
| 214 | |
| 215 | ///Return a highest active level. |
| 216 | /// |
| 217 | ///\return the level of the highest active item or -1 if there is no active |
| 218 | ///item. |
| 219 | int highestActiveLevel() const |
| 220 | { |
| 221 | return _highest_active; |
| 222 | } |
| 223 | |
| 224 | ///Lift the highest active item by one. |
| 225 | |
| 226 | ///Lift the item returned by highestActive() by one. |
| 227 | /// |
| 228 | void liftHighestActive() |
| 229 | { |
| 230 | ++_level[*_last_active[_highest_active]]; |
| 231 | swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
| 232 | --_first[++_highest_active]; |
| 233 | } |
| 234 | |
| 235 | ///Lift the highest active item. |
| 236 | |
| 237 | ///Lift the item returned by highestActive() to level \c new_level. |
| 238 | /// |
| 239 | ///\warning \c new_level must be strictly higher |
| 240 | ///than the current level. |
| 241 | /// |
| 242 | void liftHighestActive(int new_level) |
| 243 | { |
| 244 | const Item li = *_last_active[_highest_active]; |
| 245 | |
| 246 | copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
| 247 | for(int l=_highest_active+1;l<new_level;l++) |
| 248 | { |
| 249 | copy(--_first[l+1],_first[l]); |
| 250 | --_last_active[l]; |
| 251 | } |
| 252 | copy(li,_first[new_level]); |
| 253 | _level[li]=new_level; |
| 254 | _highest_active=new_level; |
| 255 | } |
| 256 | |
| 257 | ///Lift the highest active item. |
| 258 | |
| 259 | ///Lift the item returned by highestActive() to the top level and |
| 260 | ///deactivates it. |
| 261 | /// |
| 262 | ///\warning \c new_level must be strictly higher |
| 263 | ///than the current level. |
| 264 | /// |
| 265 | void liftHighestActiveToTop() |
| 266 | { |
| 267 | const Item li = *_last_active[_highest_active]; |
| 268 | |
| 269 | copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
| 270 | for(int l=_highest_active+1;l<_max_level;l++) |
| 271 | { |
| 272 | copy(--_first[l+1],_first[l]); |
| 273 | --_last_active[l]; |
| 274 | } |
| 275 | copy(li,_first[_max_level]); |
| 276 | --_last_active[_max_level]; |
| 277 | _level[li]=_max_level; |
| 278 | |
| 279 | while(_highest_active>=0 && |
| 280 | _last_active[_highest_active]<_first[_highest_active]) |
| 281 | _highest_active--; |
| 282 | } |
| 283 | |
| 284 | ///@} |
| 285 | |
| 286 | ///\name Active Item on Certain Level |
| 287 | ///Functions for working with the active items. |
| 288 | |
| 289 | ///@{ |
| 290 | |
| 291 | ///Returns an active item on level \c l. |
| 292 | |
| 293 | ///Returns an active item on level \c l. |
| 294 | /// |
| 295 | ///Returns an active item on level \c l or \ref INVALID if there is no such |
| 296 | ///an item. (\c l must be from the range [0...\c max_level]. |
| 297 | Item activeOn(int l) const |
| 298 | { |
| 299 | return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
| 300 | } |
| 301 | |
| 302 | ///Lifts the active item returned by \c activeOn() member function. |
| 303 | |
| 304 | ///Lifts the active item returned by \c activeOn() member function |
| 305 | ///by one. |
| 306 | Item liftActiveOn(int level) |
| 307 | { |
| 308 | ++_level[*_last_active[level]]; |
| 309 | swap(_last_active[level]--, --_first[level+1]); |
| 310 | if (level+1>_highest_active) ++_highest_active; |
| 311 | } |
| 312 | |
| 313 | ///Lifts the active item returned by \c activeOn() member function. |
| 314 | |
| 315 | ///Lifts the active item returned by \c activeOn() member function |
| 316 | ///to the given level. |
| 317 | void liftActiveOn(int level, int new_level) |
| 318 | { |
| 319 | const Item ai = *_last_active[level]; |
| 320 | |
| 321 | copy(--_first[level+1], _last_active[level]--); |
| 322 | for(int l=level+1;l<new_level;l++) |
| 323 | { |
| 324 | copy(_last_active[l],_first[l]); |
| 325 | copy(--_first[l+1], _last_active[l]--); |
| 326 | } |
| 327 | copy(ai,_first[new_level]); |
| 328 | _level[ai]=new_level; |
| 329 | if (new_level>_highest_active) _highest_active=new_level; |
| 330 | } |
| 331 | |
| 332 | ///Lifts the active item returned by \c activeOn() member function. |
| 333 | |
| 334 | ///Lifts the active item returned by \c activeOn() member function |
| 335 | ///to the top level. |
| 336 | void liftActiveToTop(int level) |
| 337 | { |
| 338 | const Item ai = *_last_active[level]; |
| 339 | |
| 340 | copy(--_first[level+1],_last_active[level]--); |
| 341 | for(int l=level+1;l<_max_level;l++) |
| 342 | { |
| 343 | copy(_last_active[l],_first[l]); |
| 344 | copy(--_first[l+1], _last_active[l]--); |
| 345 | } |
| 346 | copy(ai,_first[_max_level]); |
| 347 | --_last_active[_max_level]; |
| 348 | _level[ai]=_max_level; |
| 349 | |
| 350 | if (_highest_active==level) { |
| 351 | while(_highest_active>=0 && |
| 352 | _last_active[_highest_active]<_first[_highest_active]) |
| 353 | _highest_active--; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | ///@} |
| 358 | |
| 359 | ///Lift an active item to a higher level. |
| 360 | |
| 361 | ///Lift an active item to a higher level. |
| 362 | ///\param i The item to be lifted. It must be active. |
| 363 | ///\param new_level The new level of \c i. It must be strictly higher |
| 364 | ///than the current level. |
| 365 | /// |
| 366 | void lift(Item i, int new_level) |
| 367 | { |
| 368 | const int lo = _level[i]; |
| 369 | const Vit w = _where[i]; |
| 370 | |
| 371 | copy(_last_active[lo],w); |
| 372 | copy(--_first[lo+1],_last_active[lo]--); |
| 373 | for(int l=lo+1;l<new_level;l++) |
| 374 | { |
| 375 | copy(_last_active[l],_first[l]); |
| 376 | copy(--_first[l+1],_last_active[l]--); |
| 377 | } |
| 378 | copy(i,_first[new_level]); |
| 379 | _level[i]=new_level; |
| 380 | if(new_level>_highest_active) _highest_active=new_level; |
| 381 | } |
| 382 | |
| 383 | ///Mark the node as it did not reach the max level |
| 384 | |
| 385 | ///Mark the node as it did not reach the max level. It sets the |
| 386 | ///level to the under the max level value. The node will be never |
| 387 | ///more activated because the push operation from the maximum |
| 388 | ///level is forbidden in the push-relabel algorithms. The node |
| 389 | ///should be lifted previously to the top level. |
| 390 | void markToBottom(Item i) { |
| 391 | _level[i] = _max_level - 1; |
| 392 | } |
| 393 | |
| 394 | ///Lift all nodes on and above a level to the top (and deactivate them). |
| 395 | |
| 396 | ///This function lifts all nodes on and above level \c l to \c |
| 397 | ///maxLevel(), and also deactivates them. |
| 398 | void liftToTop(int l) |
| 399 | { |
| 400 | const Vit f=_first[l]; |
| 401 | const Vit tl=_first[_max_level]; |
| 402 | for(Vit i=f;i!=tl;++i) |
| 403 | _level[*i]=_max_level; |
| 404 | for(int i=l;i<=_max_level;i++) |
| 405 | { |
| 406 | _first[i]=f; |
| 407 | _last_active[i]=f-1; |
| 408 | } |
| 409 | for(_highest_active=l-1; |
| 410 | _highest_active>=0 && |
| 411 | _last_active[_highest_active]<_first[_highest_active]; |
| 412 | _highest_active--) ; |
| 413 | } |
| 414 | |
| 415 | private: |
| 416 | int _init_lev; |
| 417 | Vit _init_num; |
| 418 | |
| 419 | public: |
| 420 | |
| 421 | ///\name Initialization |
| 422 | ///Using this function you can initialize the levels of the item. |
| 423 | ///\n |
| 424 | ///This initializatios is started with calling \c initStart(). |
| 425 | ///Then the |
| 426 | ///items should be listed levels by levels statring with the lowest one |
| 427 | ///(with level 0). This is done by using \c initAddItem() |
| 428 | ///and \c initNewLevel(). Finally \c initFinish() must be called. |
| 429 | ///The items not listed will be put on the highest level. |
| 430 | ///@{ |
| 431 | |
| 432 | ///Start the initialization process. |
| 433 | |
| 434 | void initStart() |
| 435 | { |
| 436 | _init_lev=0; |
| 437 | _init_num=_items.begin(); |
| 438 | _first[0]=_items.begin(); |
| 439 | _last_active[0]=_items.begin()-1; |
| 440 | Vit n=_items.begin(); |
| 441 | for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
| 442 | { |
| 443 | *n=i; |
| 444 | _where[i]=n; |
| 445 | _level[i]=_max_level; |
| 446 | ++n; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | ///Add an item to the current level. |
| 451 | |
| 452 | void initAddItem(Item i) |
| 453 | { |
| 454 | swap(_where[i],_init_num); |
| 455 | _level[i]=_init_lev; |
| 456 | ++_init_num; |
| 457 | } |
| 458 | |
| 459 | ///Start a new level. |
| 460 | |
| 461 | ///Start a new level. |
| 462 | ///It shouldn't be used before the items on level 0 are listed. |
| 463 | void initNewLevel() |
| 464 | { |
| 465 | _init_lev++; |
| 466 | _first[_init_lev]=_init_num; |
| 467 | _last_active[_init_lev]=_init_num-1; |
| 468 | } |
| 469 | |
| 470 | ///Finalize the initialization process. |
| 471 | |
| 472 | void initFinish() |
| 473 | { |
| 474 | for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
| 475 | { |
| 476 | _first[_init_lev]=_init_num; |
| 477 | _last_active[_init_lev]=_init_num-1; |
| 478 | } |
| 479 | _first[_max_level+1]=_items.begin()+_item_num; |
| 480 | _last_active[_max_level+1]=_items.begin()+_item_num-1; |
| 481 | _highest_active = -1; |
| 482 | } |
| 483 | |
| 484 | ///@} |
| 485 | |
| 486 | }; |
| 487 | |
| 488 | ///Class for handling "labels" in push-relabel type algorithms. |
| 489 | |
| 490 | ///A class for handling "labels" in push-relabel type algorithms. |
| 491 | /// |
| 492 | ///\ingroup auxdat |
| 493 | ///Using this class you can assign "labels" (nonnegative integer numbers) |
| 494 | ///to the edges or nodes of a graph, manipulate and query them through |
| 495 | ///operations typically arising in "push-relabel" type algorithms. |
| 496 | /// |
| 497 | ///Each item is either \em active or not, and you can also choose a |
| 498 | ///highest level active item. |
| 499 | /// |
| 500 | ///\sa Elevator |
| 501 | /// |
| 502 | ///\param Graph the underlying graph type |
| 503 | ///\param Item Type of the items the data is assigned to (Graph::Node, |
| 504 | ///Graph::Edge, Graph::UEdge) |
| 505 | template <class Graph, class Item> |
| 506 | class LinkedElevator { |
| 507 | public: |
| 508 | |
| 509 | typedef Item Key; |
| 510 | typedef int Value; |
| 511 | |
| 512 | private: |
| 513 | |
| 514 | typedef typename ItemSetTraits<Graph,Item>:: |
| 515 | template Map<Item>::Type ItemMap; |
| 516 | typedef typename ItemSetTraits<Graph,Item>:: |
| 517 | template Map<int>::Type IntMap; |
| 518 | typedef typename ItemSetTraits<Graph,Item>:: |
| 519 | template Map<bool>::Type BoolMap; |
| 520 | |
| 521 | const Graph &_graph; |
| 522 | int _max_level; |
| 523 | int _item_num; |
| 524 | std::vector<Item> _first, _last; |
| 525 | ItemMap _prev, _next; |
| 526 | int _highest_active; |
| 527 | IntMap _level; |
| 528 | BoolMap _active; |
| 529 | |
| 530 | public: |
| 531 | ///Constructor with given maximum level. |
| 532 | |
| 533 | ///Constructor with given maximum level. |
| 534 | /// |
| 535 | ///\param g The underlying graph |
| 536 | ///\param max_level Set the range of the possible labels to |
| 537 | ///[0...\c max_level] |
| 538 | LinkedElevator(const Graph& graph, int max_level) |
| 539 | : _graph(graph), _max_level(max_level), _item_num(_max_level), |
| 540 | _first(_max_level + 1), _last(_max_level + 1), |
| 541 | _prev(graph), _next(graph), |
| 542 | _highest_active(-1), _level(graph), _active(graph) {} |
| 543 | |
| 544 | ///Constructor. |
| 545 | |
| 546 | ///Constructor. |
| 547 | /// |
| 548 | ///\param g The underlying graph |
| 549 | ///The range of the possible labels is [0...\c max_level], |
| 550 | ///where \c max_level is equal to the number of labeled items in the graph. |
| 551 | LinkedElevator(const Graph& graph) |
| 552 | : _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
| 553 | _item_num(_max_level), |
| 554 | _first(_max_level + 1), _last(_max_level + 1), |
| 555 | _prev(graph, INVALID), _next(graph, INVALID), |
| 556 | _highest_active(-1), _level(graph), _active(graph) {} |
| 557 | |
| 558 | |
| 559 | ///Activate item \c i. |
| 560 | |
| 561 | ///Activate item \c i. |
| 562 | ///\pre Item \c i shouldn't be active before. |
| 563 | void activate(Item i) { |
| 564 | _active.set(i, true); |
| 565 | |
| 566 | int level = _level[i]; |
| 567 | if (level > _highest_active) { |
| 568 | _highest_active = level; |
| 569 | } |
| 570 | |
| 571 | if (_prev[i] == INVALID || _active[_prev[i]]) return; |
| 572 | //unlace |
| 573 | _next.set(_prev[i], _next[i]); |
| 574 | if (_next[i] != INVALID) { |
| 575 | _prev.set(_next[i], _prev[i]); |
| 576 | } else { |
| 577 | _last[level] = _prev[i]; |
| 578 | } |
| 579 | //lace |
| 580 | _next.set(i, _first[level]); |
| 581 | _prev.set(_first[level], i); |
| 582 | _prev.set(i, INVALID); |
| 583 | _first[level] = i; |
| 584 | |
| 585 | } |
| 586 | |
| 587 | ///Deactivate item \c i. |
| 588 | |
| 589 | ///Deactivate item \c i. |
| 590 | ///\pre Item \c i must be active before. |
| 591 | void deactivate(Item i) { |
| 592 | _active.set(i, false); |
| 593 | int level = _level[i]; |
| 594 | |
| 595 | if (_next[i] == INVALID || !_active[_next[i]]) |
| 596 | goto find_highest_level; |
| 597 | |
| 598 | //unlace |
| 599 | _prev.set(_next[i], _prev[i]); |
| 600 | if (_prev[i] != INVALID) { |
| 601 | _next.set(_prev[i], _next[i]); |
| 602 | } else { |
| 603 | _first[_level[i]] = _next[i]; |
| 604 | } |
| 605 | //lace |
| 606 | _prev.set(i, _last[level]); |
| 607 | _next.set(_last[level], i); |
| 608 | _next.set(i, INVALID); |
| 609 | _last[level] = i; |
| 610 | |
| 611 | find_highest_level: |
| 612 | if (level == _highest_active) { |
| 613 | while (_highest_active >= 0 && activeFree(_highest_active)) |
| 614 | --_highest_active; |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | ///Query whether item \c i is active |
| 619 | bool active(Item i) const { return _active[i]; } |
| 620 | |
| 621 | ///Return the level of item \c i. |
| 622 | int operator[](Item i) const { return _level[i]; } |
| 623 | |
| 624 | ///Return the number of items on level \c l. |
| 625 | int onLevel(int l) const { |
| 626 | int num = 0; |
| 627 | Item n = _first[l]; |
| 628 | while (n != INVALID) { |
| 629 | ++num; |
| 630 | n = _next[n]; |
| 631 | } |
| 632 | return num; |
| 633 | } |
| 634 | |
| 635 | ///Return true if the level is empty. |
| 636 | bool emptyLevel(int l) const { |
| 637 | return _first[l] == INVALID; |
| 638 | } |
| 639 | |
| 640 | ///Return the number of items above level \c l. |
| 641 | int aboveLevel(int l) const { |
| 642 | int num = 0; |
| 643 | for (int level = l + 1; level < _max_level; ++level) |
| 644 | num += onLevel(level); |
| 645 | return num; |
| 646 | } |
| 647 | |
| 648 | ///Return the number of active items on level \c l. |
| 649 | int activesOnLevel(int l) const { |
| 650 | int num = 0; |
| 651 | Item n = _first[l]; |
| 652 | while (n != INVALID && _active[n]) { |
| 653 | ++num; |
| 654 | n = _next[n]; |
| 655 | } |
| 656 | return num; |
| 657 | } |
| 658 | |
| 659 | ///Return true if there is not active item on level \c l. |
| 660 | bool activeFree(int l) const { |
| 661 | return _first[l] == INVALID || !_active[_first[l]]; |
| 662 | } |
| 663 | |
| 664 | ///Return the maximum allowed level. |
| 665 | int maxLevel() const { |
| 666 | return _max_level; |
| 667 | } |
| 668 | |
| 669 | ///\name Highest Active Item |
| 670 | ///Functions for working with the highest level |
| 671 | ///active item. |
| 672 | |
| 673 | ///@{ |
| 674 | |
| 675 | ///Return a highest level active item. |
| 676 | |
| 677 | ///Return a highest level active item. |
| 678 | /// |
| 679 | ///\return the highest level active item or INVALID if there is no |
| 680 | ///active item. |
| 681 | Item highestActive() const { |
| 682 | return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
| 683 | } |
| 684 | |
| 685 | ///Return a highest active level. |
| 686 | |
| 687 | ///Return a highest active level. |
| 688 | /// |
| 689 | ///\return the level of the highest active item or -1 if there is |
| 690 | ///no active item. |
| 691 | int highestActiveLevel() const { |
| 692 | return _highest_active; |
| 693 | } |
| 694 | |
| 695 | ///Lift the highest active item by one. |
| 696 | |
| 697 | ///Lift the item returned by highestActive() by one. |
| 698 | /// |
| 699 | void liftHighestActive() { |
| 700 | Item i = _first[_highest_active]; |
| 701 | if (_next[i] != INVALID) { |
| 702 | _prev.set(_next[i], INVALID); |
| 703 | _first[_highest_active] = _next[i]; |
| 704 | } else { |
| 705 | _first[_highest_active] = INVALID; |
| 706 | _last[_highest_active] = INVALID; |
| 707 | } |
| 708 | _level.set(i, ++_highest_active); |
| 709 | if (_first[_highest_active] == INVALID) { |
| 710 | _first[_highest_active] = i; |
| 711 | _last[_highest_active] = i; |
| 712 | _prev.set(i, INVALID); |
| 713 | _next.set(i, INVALID); |
| 714 | } else { |
| 715 | _prev.set(_first[_highest_active], i); |
| 716 | _next.set(i, _first[_highest_active]); |
| 717 | _first[_highest_active] = i; |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | ///Lift the highest active item. |
| 722 | |
| 723 | ///Lift the item returned by highestActive() to level \c new_level. |
| 724 | /// |
| 725 | ///\warning \c new_level must be strictly higher |
| 726 | ///than the current level. |
| 727 | /// |
| 728 | void liftHighestActive(int new_level) { |
| 729 | Item i = _first[_highest_active]; |
| 730 | if (_next[i] != INVALID) { |
| 731 | _prev.set(_next[i], INVALID); |
| 732 | _first[_highest_active] = _next[i]; |
| 733 | } else { |
| 734 | _first[_highest_active] = INVALID; |
| 735 | _last[_highest_active] = INVALID; |
| 736 | } |
| 737 | _level.set(i, _highest_active = new_level); |
| 738 | if (_first[_highest_active] == INVALID) { |
| 739 | _first[_highest_active] = _last[_highest_active] = i; |
| 740 | _prev.set(i, INVALID); |
| 741 | _next.set(i, INVALID); |
| 742 | } else { |
| 743 | _prev.set(_first[_highest_active], i); |
| 744 | _next.set(i, _first[_highest_active]); |
| 745 | _first[_highest_active] = i; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | ///Lift the highest active to top. |
| 750 | |
| 751 | ///Lift the item returned by highestActive() to the top level and |
| 752 | ///deactivates the node. |
| 753 | /// |
| 754 | void liftHighestActiveToTop() { |
| 755 | Item i = _first[_highest_active]; |
| 756 | _level.set(i, _max_level); |
| 757 | if (_next[i] != INVALID) { |
| 758 | _prev.set(_next[i], INVALID); |
| 759 | _first[_highest_active] = _next[i]; |
| 760 | } else { |
| 761 | _first[_highest_active] = INVALID; |
| 762 | _last[_highest_active] = INVALID; |
| 763 | } |
| 764 | while (_highest_active >= 0 && activeFree(_highest_active)) |
| 765 | --_highest_active; |
| 766 | } |
| 767 | |
| 768 | ///@} |
| 769 | |
| 770 | ///\name Active Item on Certain Level |
| 771 | ///Functions for working with the active items. |
| 772 | |
| 773 | ///@{ |
| 774 | |
| 775 | ///Returns an active item on level \c l. |
| 776 | |
| 777 | ///Returns an active item on level \c l. |
| 778 | /// |
| 779 | ///Returns an active item on level \c l or \ref INVALID if there is no such |
| 780 | ///an item. (\c l must be from the range [0...\c max_level]. |
| 781 | Item activeOn(int l) const |
| 782 | { |
| 783 | return _active[_first[l]] ? _first[l] : INVALID; |
| 784 | } |
| 785 | |
| 786 | ///Lifts the active item returned by \c activeOn() member function. |
| 787 | |
| 788 | ///Lifts the active item returned by \c activeOn() member function |
| 789 | ///by one. |
| 790 | Item liftActiveOn(int l) |
| 791 | { |
| 792 | Item i = _first[l]; |
| 793 | if (_next[i] != INVALID) { |
| 794 | _prev.set(_next[i], INVALID); |
| 795 | _first[l] = _next[i]; |
| 796 | } else { |
| 797 | _first[l] = INVALID; |
| 798 | _last[l] = INVALID; |
| 799 | } |
| 800 | _level.set(i, ++l); |
| 801 | if (_first[l] == INVALID) { |
| 802 | _first[l] = _last[l] = i; |
| 803 | _prev.set(i, INVALID); |
| 804 | _next.set(i, INVALID); |
| 805 | } else { |
| 806 | _prev.set(_first[l], i); |
| 807 | _next.set(i, _first[l]); |
| 808 | _first[l] = i; |
| 809 | } |
| 810 | if (_highest_active < l) { |
| 811 | _highest_active = l; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | /// \brief Lifts the active item returned by \c activeOn() member function. |
| 816 | /// |
| 817 | /// Lifts the active item returned by \c activeOn() member function |
| 818 | /// to the given level. |
| 819 | void liftActiveOn(int l, int new_level) |
| 820 | { |
| 821 | Item i = _first[l]; |
| 822 | if (_next[i] != INVALID) { |
| 823 | _prev.set(_next[i], INVALID); |
| 824 | _first[l] = _next[i]; |
| 825 | } else { |
| 826 | _first[l] = INVALID; |
| 827 | _last[l] = INVALID; |
| 828 | } |
| 829 | _level.set(i, l = new_level); |
| 830 | if (_first[l] == INVALID) { |
| 831 | _first[l] = _last[l] = i; |
| 832 | _prev.set(i, INVALID); |
| 833 | _next.set(i, INVALID); |
| 834 | } else { |
| 835 | _prev.set(_first[l], i); |
| 836 | _next.set(i, _first[l]); |
| 837 | _first[l] = i; |
| 838 | } |
| 839 | if (_highest_active < l) { |
| 840 | _highest_active = l; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | ///Lifts the active item returned by \c activeOn() member function. |
| 845 | |
| 846 | ///Lifts the active item returned by \c activeOn() member function |
| 847 | ///to the top level. |
| 848 | void liftActiveToTop(int l) |
| 849 | { |
| 850 | Item i = _first[l]; |
| 851 | if (_next[i] != INVALID) { |
| 852 | _prev.set(_next[i], INVALID); |
| 853 | _first[l] = _next[i]; |
| 854 | } else { |
| 855 | _first[l] = INVALID; |
| 856 | _last[l] = INVALID; |
| 857 | } |
| 858 | _level.set(i, _max_level); |
| 859 | if (l == _highest_active) { |
| 860 | while (_highest_active >= 0 && activeFree(_highest_active)) |
| 861 | --_highest_active; |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | ///@} |
| 866 | |
| 867 | /// \brief Lift an active item to a higher level. |
| 868 | /// |
| 869 | /// Lift an active item to a higher level. |
| 870 | /// \param i The item to be lifted. It must be active. |
| 871 | /// \param new_level The new level of \c i. It must be strictly higher |
| 872 | /// than the current level. |
| 873 | /// |
| 874 | void lift(Item i, int new_level) { |
| 875 | if (_next[i] != INVALID) { |
| 876 | _prev.set(_next[i], _prev[i]); |
| 877 | } else { |
| 878 | _last[new_level] = _prev[i]; |
| 879 | } |
| 880 | if (_prev[i] != INVALID) { |
| 881 | _next.set(_prev[i], _next[i]); |
| 882 | } else { |
| 883 | _first[new_level] = _next[i]; |
| 884 | } |
| 885 | _level.set(i, new_level); |
| 886 | if (_first[new_level] == INVALID) { |
| 887 | _first[new_level] = _last[new_level] = i; |
| 888 | _prev.set(i, INVALID); |
| 889 | _next.set(i, INVALID); |
| 890 | } else { |
| 891 | _prev.set(_first[new_level], i); |
| 892 | _next.set(i, _first[new_level]); |
| 893 | _first[new_level] = i; |
| 894 | } |
| 895 | if (_highest_active < new_level) { |
| 896 | _highest_active = new_level; |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | ///Mark the node as it did not reach the max level |
| 901 | |
| 902 | ///Mark the node as it did not reach the max level. It sets the |
| 903 | ///level to the under the max level value. The node will be never |
| 904 | ///more activated because the push operation from the maximum |
| 905 | ///level is forbidden in the push-relabel algorithms. The node |
| 906 | ///should be lifted previously to the top level. |
| 907 | void markToBottom(Item i) { |
| 908 | _level.set(i, _max_level - 1); |
| 909 | } |
| 910 | |
| 911 | ///Lift all nodes on and above a level to the top (and deactivate them). |
| 912 | |
| 913 | ///This function lifts all nodes on and above level \c l to \c |
| 914 | ///maxLevel(), and also deactivates them. |
| 915 | void liftToTop(int l) { |
| 916 | for (int i = l + 1; _first[i] != INVALID; ++i) { |
| 917 | Item n = _first[i]; |
| 918 | while (n != INVALID) { |
| 919 | _level.set(n, _max_level); |
| 920 | n = _next[n]; |
| 921 | } |
| 922 | _first[i] = INVALID; |
| 923 | _last[i] = INVALID; |
| 924 | } |
| 925 | if (_highest_active > l - 1) { |
| 926 | _highest_active = l - 1; |
| 927 | while (_highest_active >= 0 && activeFree(_highest_active)) |
| 928 | --_highest_active; |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | private: |
| 933 | |
| 934 | int _init_level; |
| 935 | |
| 936 | public: |
| 937 | |
| 938 | ///\name Initialization |
| 939 | ///Using this function you can initialize the levels of the item. |
| 940 | ///\n |
| 941 | ///This initializatios is started with calling \c initStart(). |
| 942 | ///Then the |
| 943 | ///items should be listed levels by levels statring with the lowest one |
| 944 | ///(with level 0). This is done by using \c initAddItem() |
| 945 | ///and \c initNewLevel(). Finally \c initFinish() must be called. |
| 946 | ///The items not listed will be put on the highest level. |
| 947 | ///@{ |
| 948 | |
| 949 | ///Start the initialization process. |
| 950 | |
| 951 | void initStart() { |
| 952 | |
| 953 | for (int i = 0; i <= _max_level; ++i) { |
| 954 | _first[i] = _last[i] = INVALID; |
| 955 | } |
| 956 | _init_level = 0; |
| 957 | for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
| 958 | i != INVALID; ++i) { |
| 959 | _level.set(i, _max_level); |
| 960 | _active.set(i, false); |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | ///Add an item to the current level. |
| 965 | |
| 966 | void initAddItem(Item i) { |
| 967 | _level.set(i, _init_level); |
| 968 | if (_last[_init_level] == INVALID) { |
| 969 | _first[_init_level] = i; |
| 970 | _last[_init_level] = i; |
| 971 | _prev.set(i, INVALID); |
| 972 | _next.set(i, INVALID); |
| 973 | } else { |
| 974 | _prev.set(i, _last[_init_level]); |
| 975 | _next.set(i, INVALID); |
| 976 | _next.set(_last[_init_level], i); |
| 977 | _last[_init_level] = i; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | ///Start a new level. |
| 982 | |
| 983 | ///Start a new level. |
| 984 | ///It shouldn't be used before the items on level 0 are listed. |
| 985 | void initNewLevel() { |
| 986 | ++_init_level; |
| 987 | } |
| 988 | |
| 989 | ///Finalize the initialization process. |
| 990 | |
| 991 | void initFinish() { |
| 992 | _highest_active = -1; |
| 993 | } |
| 994 | |
| 995 | ///@} |
| 996 | |
| 997 | }; |
| 998 | |
| 999 | |
| 1000 | } //END OF NAMESPACE LEMON |
| 1001 | |
| 1002 | #endif |
| 1003 | |