| | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2010 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_EDMONDS_KARP_H |
| | 20 | #define LEMON_EDMONDS_KARP_H |
| | 21 | |
| | 22 | /// \file |
| | 23 | /// \ingroup max_flow |
| | 24 | /// \brief Implementation of the Edmonds-Karp algorithm. |
| | 25 | |
| | 26 | #include <lemon/tolerance.h> |
| | 27 | #include <vector> |
| | 28 | |
| | 29 | namespace lemon { |
| | 30 | |
| | 31 | /// \brief Default traits class of EdmondsKarp class. |
| | 32 | /// |
| | 33 | /// Default traits class of EdmondsKarp class. |
| | 34 | /// \param _Digraph Digraph type. |
| | 35 | /// \param _CapacityMap Type of capacity map. |
| | 36 | template <typename _Digraph, typename _CapacityMap> |
| | 37 | struct EdmondsKarpDefaultTraits { |
| | 38 | |
| | 39 | /// \brief The digraph type the algorithm runs on. |
| | 40 | typedef _Digraph Digraph; |
| | 41 | |
| | 42 | /// \brief The type of the map that stores the arc capacities. |
| | 43 | /// |
| | 44 | /// The type of the map that stores the arc capacities. |
| | 45 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| | 46 | typedef _CapacityMap CapacityMap; |
| | 47 | |
| | 48 | /// \brief The type of the length of the arcs. |
| | 49 | typedef typename CapacityMap::Value Value; |
| | 50 | |
| | 51 | /// \brief The map type that stores the flow values. |
| | 52 | /// |
| | 53 | /// The map type that stores the flow values. |
| | 54 | /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| | 55 | typedef typename Digraph::template ArcMap<Value> FlowMap; |
| | 56 | |
| | 57 | /// \brief Instantiates a FlowMap. |
| | 58 | /// |
| | 59 | /// This function instantiates a \ref FlowMap. |
| | 60 | /// \param digraph The digraph, to which we would like to define the flow map. |
| | 61 | static FlowMap* createFlowMap(const Digraph& digraph) { |
| | 62 | return new FlowMap(digraph); |
| | 63 | } |
| | 64 | |
| | 65 | /// \brief The tolerance used by the algorithm |
| | 66 | /// |
| | 67 | /// The tolerance used by the algorithm to handle inexact computation. |
| | 68 | typedef lemon::Tolerance<Value> Tolerance; |
| | 69 | |
| | 70 | }; |
| | 71 | |
| | 72 | /// \ingroup max_flow |
| | 73 | /// |
| | 74 | /// \brief Edmonds-Karp algorithms class. |
| | 75 | /// |
| | 76 | /// This class provides an implementation of the \e Edmonds-Karp \e |
| | 77 | /// algorithm producing a flow of maximum value in directed |
| | 78 | /// digraphs. The Edmonds-Karp algorithm is slower than the Preflow |
| | 79 | /// algorithm but it has an advantage of the step-by-step execution |
| | 80 | /// control with feasible flow solutions. The \e source node, the \e |
| | 81 | /// target node, the \e capacity of the arcs and the \e starting \e |
| | 82 | /// flow value of the arcs should be passed to the algorithm |
| | 83 | /// through the constructor. |
| | 84 | /// |
| | 85 | /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in |
| | 86 | /// worst case. Always try the preflow algorithm instead of this if |
| | 87 | /// you just want to compute the optimal flow. |
| | 88 | /// |
| | 89 | /// \param _Digraph The digraph type the algorithm runs on. |
| | 90 | /// \param _CapacityMap The capacity map type. |
| | 91 | /// \param _Traits Traits class to set various data types used by |
| | 92 | /// the algorithm. The default traits class is \ref |
| | 93 | /// EdmondsKarpDefaultTraits. See \ref EdmondsKarpDefaultTraits for the |
| | 94 | /// documentation of a Edmonds-Karp traits class. |
| | 95 | |
| | 96 | #ifdef DOXYGEN |
| | 97 | template <typename _Digraph, typename _CapacityMap, typename _Traits> |
| | 98 | #else |
| | 99 | template <typename _Digraph, |
| | 100 | typename _CapacityMap = typename _Digraph::template ArcMap<int>, |
| | 101 | typename _Traits = EdmondsKarpDefaultTraits<_Digraph, _CapacityMap> > |
| | 102 | #endif |
| | 103 | class EdmondsKarp { |
| | 104 | public: |
| | 105 | |
| | 106 | typedef _Traits Traits; |
| | 107 | typedef typename Traits::Digraph Digraph; |
| | 108 | typedef typename Traits::CapacityMap CapacityMap; |
| | 109 | typedef typename Traits::Value Value; |
| | 110 | |
| | 111 | typedef typename Traits::FlowMap FlowMap; |
| | 112 | typedef typename Traits::Tolerance Tolerance; |
| | 113 | |
| | 114 | private: |
| | 115 | |
| | 116 | TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| | 117 | typedef typename Digraph::template NodeMap<Arc> PredMap; |
| | 118 | |
| | 119 | const Digraph& _graph; |
| | 120 | const CapacityMap* _capacity; |
| | 121 | |
| | 122 | Node _source, _target; |
| | 123 | |
| | 124 | FlowMap* _flow; |
| | 125 | bool _local_flow; |
| | 126 | |
| | 127 | PredMap* _pred; |
| | 128 | std::vector<Node> _queue; |
| | 129 | |
| | 130 | Tolerance _tolerance; |
| | 131 | Value _flow_value; |
| | 132 | |
| | 133 | void createStructures() { |
| | 134 | if (!_flow) { |
| | 135 | _flow = Traits::createFlowMap(_graph); |
| | 136 | _local_flow = true; |
| | 137 | } |
| | 138 | if (!_pred) { |
| | 139 | _pred = new PredMap(_graph); |
| | 140 | } |
| | 141 | _queue.resize(countNodes(_graph)); |
| | 142 | } |
| | 143 | |
| | 144 | void destroyStructures() { |
| | 145 | if (_local_flow) { |
| | 146 | delete _flow; |
| | 147 | } |
| | 148 | if (_pred) { |
| | 149 | delete _pred; |
| | 150 | } |
| | 151 | } |
| | 152 | |
| | 153 | public: |
| | 154 | |
| | 155 | ///\name Named template parameters |
| | 156 | |
| | 157 | ///@{ |
| | 158 | |
| | 159 | template <typename _FlowMap> |
| | 160 | struct DefFlowMapTraits : public Traits { |
| | 161 | typedef _FlowMap FlowMap; |
| | 162 | static FlowMap *createFlowMap(const Digraph&) { |
| | 163 | LEMON_ASSERT(false,"Uninitialized parameter."); |
| | 164 | return 0; |
| | 165 | } |
| | 166 | }; |
| | 167 | |
| | 168 | /// \brief \ref named-templ-param "Named parameter" for setting |
| | 169 | /// FlowMap type |
| | 170 | /// |
| | 171 | /// \ref named-templ-param "Named parameter" for setting FlowMap |
| | 172 | /// type |
| | 173 | template <typename _FlowMap> |
| | 174 | struct DefFlowMap |
| | 175 | : public EdmondsKarp<Digraph, CapacityMap, DefFlowMapTraits<_FlowMap> > { |
| | 176 | typedef EdmondsKarp<Digraph, CapacityMap, DefFlowMapTraits<_FlowMap> > |
| | 177 | Create; |
| | 178 | }; |
| | 179 | |
| | 180 | |
| | 181 | /// @} |
| | 182 | |
| | 183 | protected: |
| | 184 | |
| | 185 | EdmondsKarp() {} |
| | 186 | |
| | 187 | public: |
| | 188 | |
| | 189 | /// \brief The constructor of the class. |
| | 190 | /// |
| | 191 | /// The constructor of the class. |
| | 192 | /// \param digraph The digraph the algorithm runs on. |
| | 193 | /// \param capacity The capacity of the arcs. |
| | 194 | /// \param source The source node. |
| | 195 | /// \param target The target node. |
| | 196 | EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity, |
| | 197 | Node source, Node target) |
| | 198 | : _graph(digraph), _capacity(&capacity), _source(source), _target(target), |
| | 199 | _flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value() |
| | 200 | { |
| | 201 | LEMON_ASSERT(_source != _target,"Flow source and target are the same nodes."); |
| | 202 | } |
| | 203 | |
| | 204 | /// \brief Destructor. |
| | 205 | /// |
| | 206 | /// Destructor. |
| | 207 | ~EdmondsKarp() { |
| | 208 | destroyStructures(); |
| | 209 | } |
| | 210 | |
| | 211 | /// \brief Sets the capacity map. |
| | 212 | /// |
| | 213 | /// Sets the capacity map. |
| | 214 | /// \return \c (*this) |
| | 215 | EdmondsKarp& capacityMap(const CapacityMap& map) { |
| | 216 | _capacity = ↦ |
| | 217 | return *this; |
| | 218 | } |
| | 219 | |
| | 220 | /// \brief Sets the flow map. |
| | 221 | /// |
| | 222 | /// Sets the flow map. |
| | 223 | /// \return \c (*this) |
| | 224 | EdmondsKarp& flowMap(FlowMap& map) { |
| | 225 | if (_local_flow) { |
| | 226 | delete _flow; |
| | 227 | _local_flow = false; |
| | 228 | } |
| | 229 | _flow = ↦ |
| | 230 | return *this; |
| | 231 | } |
| | 232 | |
| | 233 | /// \brief Returns the flow map. |
| | 234 | /// |
| | 235 | /// \return The flow map. |
| | 236 | const FlowMap& flowMap() const { |
| | 237 | return *_flow; |
| | 238 | } |
| | 239 | |
| | 240 | /// \brief Sets the source node. |
| | 241 | /// |
| | 242 | /// Sets the source node. |
| | 243 | /// \return \c (*this) |
| | 244 | EdmondsKarp& source(const Node& node) { |
| | 245 | _source = node; |
| | 246 | return *this; |
| | 247 | } |
| | 248 | |
| | 249 | /// \brief Sets the target node. |
| | 250 | /// |
| | 251 | /// Sets the target node. |
| | 252 | /// \return \c (*this) |
| | 253 | EdmondsKarp& target(const Node& node) { |
| | 254 | _target = node; |
| | 255 | return *this; |
| | 256 | } |
| | 257 | |
| | 258 | /// \brief Sets the tolerance used by algorithm. |
| | 259 | /// |
| | 260 | /// Sets the tolerance used by algorithm. |
| | 261 | EdmondsKarp& tolerance(const Tolerance& tolerance) { |
| | 262 | _tolerance = tolerance; |
| | 263 | return *this; |
| | 264 | } |
| | 265 | |
| | 266 | /// \brief Returns the tolerance used by algorithm. |
| | 267 | /// |
| | 268 | /// Returns the tolerance used by algorithm. |
| | 269 | const Tolerance& tolerance() const { |
| | 270 | return _tolerance; |
| | 271 | } |
| | 272 | |
| | 273 | /// \name Execution control |
| | 274 | /// The simplest way to execute the |
| | 275 | /// algorithm is to use the \c run() member functions. |
| | 276 | /// \n |
| | 277 | /// If you need more control on initial solution or |
| | 278 | /// execution then you have to call one \ref init() function and then |
| | 279 | /// the start() or multiple times the \c augment() member function. |
| | 280 | |
| | 281 | ///@{ |
| | 282 | |
| | 283 | /// \brief Initializes the algorithm |
| | 284 | /// |
| | 285 | /// Sets the flow to empty flow. |
| | 286 | void init() { |
| | 287 | createStructures(); |
| | 288 | for (ArcIt it(_graph); it != INVALID; ++it) { |
| | 289 | _flow->set(it, 0); |
| | 290 | } |
| | 291 | _flow_value = 0; |
| | 292 | } |
| | 293 | |
| | 294 | /// \brief Initializes the algorithm |
| | 295 | /// |
| | 296 | /// Initializes the flow to the \c flowMap. The \c flowMap should |
| | 297 | /// contain a feasible flow, ie. in each node excluding the source |
| | 298 | /// and the target the incoming flow should be equal to the |
| | 299 | /// outgoing flow. |
| | 300 | template <typename FlowMap> |
| | 301 | void flowInit(const FlowMap& flowMap) { |
| | 302 | createStructures(); |
| | 303 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| | 304 | _flow->set(e, flowMap[e]); |
| | 305 | } |
| | 306 | _flow_value = 0; |
| | 307 | for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| | 308 | _flow_value += (*_flow)[jt]; |
| | 309 | } |
| | 310 | for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| | 311 | _flow_value -= (*_flow)[jt]; |
| | 312 | } |
| | 313 | } |
| | 314 | |
| | 315 | /// \brief Initializes the algorithm |
| | 316 | /// |
| | 317 | /// Initializes the flow to the \c flowMap. The \c flowMap should |
| | 318 | /// contain a feasible flow, ie. in each node excluding the source |
| | 319 | /// and the target the incoming flow should be equal to the |
| | 320 | /// outgoing flow. |
| | 321 | /// \return %False when the given flowMap does not contain |
| | 322 | /// feasible flow. |
| | 323 | template <typename FlowMap> |
| | 324 | bool checkedFlowInit(const FlowMap& flowMap) { |
| | 325 | createStructures(); |
| | 326 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| | 327 | _flow->set(e, flowMap[e]); |
| | 328 | } |
| | 329 | for (NodeIt it(_graph); it != INVALID; ++it) { |
| | 330 | if (it == _source || it == _target) continue; |
| | 331 | Value outFlow = 0; |
| | 332 | for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) { |
| | 333 | outFlow += (*_flow)[jt]; |
| | 334 | } |
| | 335 | Value inFlow = 0; |
| | 336 | for (InArcIt jt(_graph, it); jt != INVALID; ++jt) { |
| | 337 | inFlow += (*_flow)[jt]; |
| | 338 | } |
| | 339 | if (_tolerance.different(outFlow, inFlow)) { |
| | 340 | return false; |
| | 341 | } |
| | 342 | } |
| | 343 | for (ArcIt it(_graph); it != INVALID; ++it) { |
| | 344 | if (_tolerance.less((*_flow)[it], 0)) return false; |
| | 345 | if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false; |
| | 346 | } |
| | 347 | _flow_value = 0; |
| | 348 | for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| | 349 | _flow_value += (*_flow)[jt]; |
| | 350 | } |
| | 351 | for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| | 352 | _flow_value -= (*_flow)[jt]; |
| | 353 | } |
| | 354 | return true; |
| | 355 | } |
| | 356 | |
| | 357 | /// \brief Augment the solution on an arc shortest path. |
| | 358 | /// |
| | 359 | /// Augment the solution on an arc shortest path. It searches an |
| | 360 | /// arc shortest path between the source and the target |
| | 361 | /// in the residual digraph by the bfs algoritm. |
| | 362 | /// Then it increases the flow on this path with the minimal residual |
| | 363 | /// capacity on the path. If there is no such path it gives back |
| | 364 | /// false. |
| | 365 | /// \return %False when the augmenting didn't success so the |
| | 366 | /// current flow is a feasible and optimal solution. |
| | 367 | bool augment() { |
| | 368 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 369 | _pred->set(n, INVALID); |
| | 370 | } |
| | 371 | |
| | 372 | int first = 0, last = 1; |
| | 373 | |
| | 374 | _queue[0] = _source; |
| | 375 | _pred->set(_source, OutArcIt(_graph, _source)); |
| | 376 | |
| | 377 | while (first != last && (*_pred)[_target] == INVALID) { |
| | 378 | Node n = _queue[first++]; |
| | 379 | |
| | 380 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| | 381 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
| | 382 | Node t = _graph.target(e); |
| | 383 | if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) { |
| | 384 | _pred->set(t, e); |
| | 385 | _queue[last++] = t; |
| | 386 | } |
| | 387 | } |
| | 388 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 389 | Value rem = (*_flow)[e]; |
| | 390 | Node t = _graph.source(e); |
| | 391 | if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) { |
| | 392 | _pred->set(t, e); |
| | 393 | _queue[last++] = t; |
| | 394 | } |
| | 395 | } |
| | 396 | } |
| | 397 | |
| | 398 | if ((*_pred)[_target] != INVALID) { |
| | 399 | Node n = _target; |
| | 400 | Arc e = (*_pred)[n]; |
| | 401 | |
| | 402 | Value prem = (*_capacity)[e] - (*_flow)[e]; |
| | 403 | n = _graph.source(e); |
| | 404 | while (n != _source) { |
| | 405 | e = (*_pred)[n]; |
| | 406 | if (_graph.target(e) == n) { |
| | 407 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
| | 408 | if (rem < prem) prem = rem; |
| | 409 | n = _graph.source(e); |
| | 410 | } else { |
| | 411 | Value rem = (*_flow)[e]; |
| | 412 | if (rem < prem) prem = rem; |
| | 413 | n = _graph.target(e); |
| | 414 | } |
| | 415 | } |
| | 416 | |
| | 417 | n = _target; |
| | 418 | e = (*_pred)[n]; |
| | 419 | |
| | 420 | _flow->set(e, (*_flow)[e] + prem); |
| | 421 | n = _graph.source(e); |
| | 422 | while (n != _source) { |
| | 423 | e = (*_pred)[n]; |
| | 424 | if (_graph.target(e) == n) { |
| | 425 | _flow->set(e, (*_flow)[e] + prem); |
| | 426 | n = _graph.source(e); |
| | 427 | } else { |
| | 428 | _flow->set(e, (*_flow)[e] - prem); |
| | 429 | n = _graph.target(e); |
| | 430 | } |
| | 431 | } |
| | 432 | |
| | 433 | _flow_value += prem; |
| | 434 | return true; |
| | 435 | } else { |
| | 436 | return false; |
| | 437 | } |
| | 438 | } |
| | 439 | |
| | 440 | /// \brief Executes the algorithm |
| | 441 | /// |
| | 442 | /// It runs augmenting phases until the optimal solution is reached. |
| | 443 | void start() { |
| | 444 | while (augment()) {} |
| | 445 | } |
| | 446 | |
| | 447 | /// \brief Runs the algorithm. |
| | 448 | /// |
| | 449 | /// It is just a shorthand for: |
| | 450 | /// |
| | 451 | ///\code |
| | 452 | /// ek.init(); |
| | 453 | /// ek.start(); |
| | 454 | ///\endcode |
| | 455 | void run() { |
| | 456 | init(); |
| | 457 | start(); |
| | 458 | } |
| | 459 | |
| | 460 | /// @} |
| | 461 | |
| | 462 | /// \name Query Functions |
| | 463 | /// The result of the Edmonds-Karp algorithm can be obtained using these |
| | 464 | /// functions.\n |
| | 465 | /// Before the use of these functions, |
| | 466 | /// either run() or start() must be called. |
| | 467 | |
| | 468 | ///@{ |
| | 469 | |
| | 470 | /// \brief Returns the value of the maximum flow. |
| | 471 | /// |
| | 472 | /// Returns the value of the maximum flow by returning the excess |
| | 473 | /// of the target node \c t. |
| | 474 | |
| | 475 | Value flowValue() const { |
| | 476 | return _flow_value; |
| | 477 | } |
| | 478 | |
| | 479 | |
| | 480 | /// \brief Returns the flow on the arc. |
| | 481 | /// |
| | 482 | /// Sets the \c flowMap to the flow on the arcs. |
| | 483 | Value flow(const Arc& arc) const { |
| | 484 | return (*_flow)[arc]; |
| | 485 | } |
| | 486 | |
| | 487 | /// \brief Returns true when the node is on the source side of minimum cut. |
| | 488 | /// |
| | 489 | |
| | 490 | /// Returns true when the node is on the source side of minimum |
| | 491 | /// cut. |
| | 492 | |
| | 493 | bool minCut(const Node& node) const { |
| | 494 | return ((*_pred)[node] != INVALID) or node == _source; |
| | 495 | } |
| | 496 | |
| | 497 | /// \brief Returns a minimum value cut. |
| | 498 | /// |
| | 499 | /// Sets \c cutMap to the characteristic vector of a minimum value cut. |
| | 500 | |
| | 501 | template <typename CutMap> |
| | 502 | void minCutMap(CutMap& cutMap) const { |
| | 503 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 504 | cutMap.set(n, (*_pred)[n] != INVALID); |
| | 505 | } |
| | 506 | cutMap.set(_source, true); |
| | 507 | } |
| | 508 | |
| | 509 | /// @} |
| | 510 | |
| | 511 | }; |
| | 512 | |
| | 513 | } |
| | 514 | |
| | 515 | #endif |