| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2010 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_EDMONDS_KARP_H |
| 20 | #define LEMON_EDMONDS_KARP_H |
| 21 | |
| 22 | /// \file |
| 23 | /// \ingroup max_flow |
| 24 | /// \brief Implementation of the Edmonds-Karp algorithm. |
| 25 | |
| 26 | #include <lemon/tolerance.h> |
| 27 | #include <vector> |
| 28 | |
| 29 | namespace lemon { |
| 30 | |
| 31 | /// \brief Default traits class of EdmondsKarp class. |
| 32 | /// |
| 33 | /// Default traits class of EdmondsKarp class. |
| 34 | /// \param GR Digraph type. |
| 35 | /// \param CAP Type of capacity map. |
| 36 | template <typename GR, typename CAP> |
| 37 | struct EdmondsKarpDefaultTraits { |
| 38 | |
| 39 | /// \brief The digraph type the algorithm runs on. |
| 40 | typedef GR Digraph; |
| 41 | |
| 42 | /// \brief The type of the map that stores the arc capacities. |
| 43 | /// |
| 44 | /// The type of the map that stores the arc capacities. |
| 45 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | typedef CAP CapacityMap; |
| 47 | |
| 48 | /// \brief The type of the length of the arcs. |
| 49 | typedef typename CapacityMap::Value Value; |
| 50 | |
| 51 | /// \brief The map type that stores the flow values. |
| 52 | /// |
| 53 | /// The map type that stores the flow values. |
| 54 | /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 | typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 56 | |
| 57 | /// \brief Instantiates a FlowMap. |
| 58 | /// |
| 59 | /// This function instantiates a \ref FlowMap. |
| 60 | /// \param digraph The digraph, to which we would like to define the flow map. |
| 61 | static FlowMap* createFlowMap(const Digraph& digraph) { |
| 62 | return new FlowMap(digraph); |
| 63 | } |
| 64 | |
| 65 | /// \brief The tolerance used by the algorithm |
| 66 | /// |
| 67 | /// The tolerance used by the algorithm to handle inexact computation. |
| 68 | typedef lemon::Tolerance<Value> Tolerance; |
| 69 | |
| 70 | }; |
| 71 | |
| 72 | /// \ingroup max_flow |
| 73 | /// |
| 74 | /// \brief Edmonds-Karp algorithms class. |
| 75 | /// |
| 76 | /// This class provides an implementation of the \e Edmonds-Karp \e |
| 77 | /// algorithm producing a flow of maximum value in directed |
| 78 | /// digraphs. The Edmonds-Karp algorithm is slower than the Preflow |
| 79 | /// algorithm but it has an advantage of the step-by-step execution |
| 80 | /// control with feasible flow solutions. The \e source node, the \e |
| 81 | /// target node, the \e capacity of the arcs and the \e starting \e |
| 82 | /// flow value of the arcs should be passed to the algorithm |
| 83 | /// through the constructor. |
| 84 | /// |
| 85 | /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in |
| 86 | /// worst case. Always try the preflow algorithm instead of this if |
| 87 | /// you just want to compute the optimal flow. |
| 88 | /// |
| 89 | /// \param GR The digraph type the algorithm runs on. |
| 90 | /// \param CAP The capacity map type. |
| 91 | /// \param TR Traits class to set various data types used by |
| 92 | /// the algorithm. The default traits class is \ref |
| 93 | /// EdmondsKarpDefaultTraits. See \ref EdmondsKarpDefaultTraits for the |
| 94 | /// documentation of a Edmonds-Karp traits class. |
| 95 | |
| 96 | #ifdef DOXYGEN |
| 97 | template <typename GR, typename CAP, typename TR> |
| 98 | #else |
| 99 | template <typename GR, |
| 100 | typename CAP = typename GR::template ArcMap<int>, |
| 101 | typename TR = EdmondsKarpDefaultTraits<GR, CAP> > |
| 102 | #endif |
| 103 | class EdmondsKarp { |
| 104 | public: |
| 105 | |
| 106 | typedef TR Traits; |
| 107 | typedef typename Traits::Digraph Digraph; |
| 108 | typedef typename Traits::CapacityMap CapacityMap; |
| 109 | typedef typename Traits::Value Value; |
| 110 | |
| 111 | typedef typename Traits::FlowMap FlowMap; |
| 112 | typedef typename Traits::Tolerance Tolerance; |
| 113 | |
| 114 | private: |
| 115 | |
| 116 | TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 117 | typedef typename Digraph::template NodeMap<Arc> PredMap; |
| 118 | |
| 119 | const Digraph& _graph; |
| 120 | const CapacityMap* _capacity; |
| 121 | |
| 122 | Node _source, _target; |
| 123 | |
| 124 | FlowMap* _flow; |
| 125 | bool _local_flow; |
| 126 | |
| 127 | PredMap* _pred; |
| 128 | std::vector<Node> _queue; |
| 129 | |
| 130 | Tolerance _tolerance; |
| 131 | Value _flow_value; |
| 132 | |
| 133 | void createStructures() { |
| 134 | if (!_flow) { |
| 135 | _flow = Traits::createFlowMap(_graph); |
| 136 | _local_flow = true; |
| 137 | } |
| 138 | if (!_pred) { |
| 139 | _pred = new PredMap(_graph); |
| 140 | } |
| 141 | _queue.resize(countNodes(_graph)); |
| 142 | } |
| 143 | |
| 144 | void destroyStructures() { |
| 145 | if (_local_flow) { |
| 146 | delete _flow; |
| 147 | } |
| 148 | if (_pred) { |
| 149 | delete _pred; |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | public: |
| 154 | |
| 155 | ///\name Named template parameters |
| 156 | |
| 157 | ///@{ |
| 158 | |
| 159 | template <typename T> |
| 160 | struct DefFlowMapTraits : public Traits { |
| 161 | typedef T FlowMap; |
| 162 | static FlowMap *createFlowMap(const Digraph&) { |
| 163 | LEMON_ASSERT(false,"Uninitialized parameter."); |
| 164 | return 0; |
| 165 | } |
| 166 | }; |
| 167 | |
| 168 | /// \brief \ref named-templ-param "Named parameter" for setting |
| 169 | /// FlowMap type |
| 170 | /// |
| 171 | /// \ref named-templ-param "Named parameter" for setting FlowMap |
| 172 | /// type |
| 173 | template <typename T> |
| 174 | struct DefFlowMap |
| 175 | : public EdmondsKarp<Digraph, CapacityMap, DefFlowMapTraits<T> > { |
| 176 | typedef EdmondsKarp<Digraph, CapacityMap, DefFlowMapTraits<T> > |
| 177 | Create; |
| 178 | }; |
| 179 | |
| 180 | |
| 181 | /// @} |
| 182 | |
| 183 | protected: |
| 184 | |
| 185 | EdmondsKarp() {} |
| 186 | |
| 187 | public: |
| 188 | |
| 189 | /// \brief The constructor of the class. |
| 190 | /// |
| 191 | /// The constructor of the class. |
| 192 | /// \param digraph The digraph the algorithm runs on. |
| 193 | /// \param capacity The capacity of the arcs. |
| 194 | /// \param source The source node. |
| 195 | /// \param target The target node. |
| 196 | EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity, |
| 197 | Node source, Node target) |
| 198 | : _graph(digraph), _capacity(&capacity), _source(source), _target(target), |
| 199 | _flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value() |
| 200 | { |
| 201 | LEMON_ASSERT(_source != _target,"Flow source and target are the same nodes."); |
| 202 | } |
| 203 | |
| 204 | /// \brief Destructor. |
| 205 | /// |
| 206 | /// Destructor. |
| 207 | ~EdmondsKarp() { |
| 208 | destroyStructures(); |
| 209 | } |
| 210 | |
| 211 | /// \brief Sets the capacity map. |
| 212 | /// |
| 213 | /// Sets the capacity map. |
| 214 | /// \return \c (*this) |
| 215 | EdmondsKarp& capacityMap(const CapacityMap& map) { |
| 216 | _capacity = ↦ |
| 217 | return *this; |
| 218 | } |
| 219 | |
| 220 | /// \brief Sets the flow map. |
| 221 | /// |
| 222 | /// Sets the flow map. |
| 223 | /// \return \c (*this) |
| 224 | EdmondsKarp& flowMap(FlowMap& map) { |
| 225 | if (_local_flow) { |
| 226 | delete _flow; |
| 227 | _local_flow = false; |
| 228 | } |
| 229 | _flow = ↦ |
| 230 | return *this; |
| 231 | } |
| 232 | |
| 233 | /// \brief Returns the flow map. |
| 234 | /// |
| 235 | /// \return The flow map. |
| 236 | const FlowMap& flowMap() const { |
| 237 | return *_flow; |
| 238 | } |
| 239 | |
| 240 | /// \brief Sets the source node. |
| 241 | /// |
| 242 | /// Sets the source node. |
| 243 | /// \return \c (*this) |
| 244 | EdmondsKarp& source(const Node& node) { |
| 245 | _source = node; |
| 246 | return *this; |
| 247 | } |
| 248 | |
| 249 | /// \brief Sets the target node. |
| 250 | /// |
| 251 | /// Sets the target node. |
| 252 | /// \return \c (*this) |
| 253 | EdmondsKarp& target(const Node& node) { |
| 254 | _target = node; |
| 255 | return *this; |
| 256 | } |
| 257 | |
| 258 | /// \brief Sets the tolerance used by algorithm. |
| 259 | /// |
| 260 | /// Sets the tolerance used by algorithm. |
| 261 | EdmondsKarp& tolerance(const Tolerance& tolerance) { |
| 262 | _tolerance = tolerance; |
| 263 | return *this; |
| 264 | } |
| 265 | |
| 266 | /// \brief Returns the tolerance used by algorithm. |
| 267 | /// |
| 268 | /// Returns the tolerance used by algorithm. |
| 269 | const Tolerance& tolerance() const { |
| 270 | return _tolerance; |
| 271 | } |
| 272 | |
| 273 | /// \name Execution control |
| 274 | /// The simplest way to execute the |
| 275 | /// algorithm is to use the \c run() member functions. |
| 276 | /// \n |
| 277 | /// If you need more control on initial solution or |
| 278 | /// execution then you have to call one \ref init() function and then |
| 279 | /// the start() or multiple times the \c augment() member function. |
| 280 | |
| 281 | ///@{ |
| 282 | |
| 283 | /// \brief Initializes the algorithm |
| 284 | /// |
| 285 | /// Sets the flow to empty flow. |
| 286 | void init() { |
| 287 | createStructures(); |
| 288 | for (ArcIt it(_graph); it != INVALID; ++it) { |
| 289 | _flow->set(it, 0); |
| 290 | } |
| 291 | _flow_value = 0; |
| 292 | } |
| 293 | |
| 294 | /// \brief Initializes the algorithm |
| 295 | /// |
| 296 | /// Initializes the flow to the \c flowMap. The \c flowMap should |
| 297 | /// contain a feasible flow, ie. in each node excluding the source |
| 298 | /// and the target the incoming flow should be equal to the |
| 299 | /// outgoing flow. |
| 300 | template <typename FlowMap> |
| 301 | void flowInit(const FlowMap& flowMap) { |
| 302 | createStructures(); |
| 303 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| 304 | _flow->set(e, flowMap[e]); |
| 305 | } |
| 306 | _flow_value = 0; |
| 307 | for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| 308 | _flow_value += (*_flow)[jt]; |
| 309 | } |
| 310 | for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| 311 | _flow_value -= (*_flow)[jt]; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | /// \brief Initializes the algorithm |
| 316 | /// |
| 317 | /// Initializes the flow to the \c flowMap. The \c flowMap should |
| 318 | /// contain a feasible flow, ie. in each node excluding the source |
| 319 | /// and the target the incoming flow should be equal to the |
| 320 | /// outgoing flow. |
| 321 | /// \return %False when the given flowMap does not contain |
| 322 | /// feasible flow. |
| 323 | template <typename FlowMap> |
| 324 | bool checkedFlowInit(const FlowMap& flowMap) { |
| 325 | createStructures(); |
| 326 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| 327 | _flow->set(e, flowMap[e]); |
| 328 | } |
| 329 | for (NodeIt it(_graph); it != INVALID; ++it) { |
| 330 | if (it == _source || it == _target) continue; |
| 331 | Value outFlow = 0; |
| 332 | for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) { |
| 333 | outFlow += (*_flow)[jt]; |
| 334 | } |
| 335 | Value inFlow = 0; |
| 336 | for (InArcIt jt(_graph, it); jt != INVALID; ++jt) { |
| 337 | inFlow += (*_flow)[jt]; |
| 338 | } |
| 339 | if (_tolerance.different(outFlow, inFlow)) { |
| 340 | return false; |
| 341 | } |
| 342 | } |
| 343 | for (ArcIt it(_graph); it != INVALID; ++it) { |
| 344 | if (_tolerance.less((*_flow)[it], 0)) return false; |
| 345 | if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false; |
| 346 | } |
| 347 | _flow_value = 0; |
| 348 | for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| 349 | _flow_value += (*_flow)[jt]; |
| 350 | } |
| 351 | for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) { |
| 352 | _flow_value -= (*_flow)[jt]; |
| 353 | } |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | /// \brief Augment the solution on an arc shortest path. |
| 358 | /// |
| 359 | /// Augment the solution on an arc shortest path. It searches an |
| 360 | /// arc shortest path between the source and the target |
| 361 | /// in the residual digraph by the bfs algoritm. |
| 362 | /// Then it increases the flow on this path with the minimal residual |
| 363 | /// capacity on the path. If there is no such path it gives back |
| 364 | /// false. |
| 365 | /// \return %False when the augmenting didn't success so the |
| 366 | /// current flow is a feasible and optimal solution. |
| 367 | bool augment() { |
| 368 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 369 | _pred->set(n, INVALID); |
| 370 | } |
| 371 | |
| 372 | int first = 0, last = 1; |
| 373 | |
| 374 | _queue[0] = _source; |
| 375 | _pred->set(_source, OutArcIt(_graph, _source)); |
| 376 | |
| 377 | while (first != last && (*_pred)[_target] == INVALID) { |
| 378 | Node n = _queue[first++]; |
| 379 | |
| 380 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| 381 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 382 | Node t = _graph.target(e); |
| 383 | if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) { |
| 384 | _pred->set(t, e); |
| 385 | _queue[last++] = t; |
| 386 | } |
| 387 | } |
| 388 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 389 | Value rem = (*_flow)[e]; |
| 390 | Node t = _graph.source(e); |
| 391 | if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) { |
| 392 | _pred->set(t, e); |
| 393 | _queue[last++] = t; |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | if ((*_pred)[_target] != INVALID) { |
| 399 | Node n = _target; |
| 400 | Arc e = (*_pred)[n]; |
| 401 | |
| 402 | Value prem = (*_capacity)[e] - (*_flow)[e]; |
| 403 | n = _graph.source(e); |
| 404 | while (n != _source) { |
| 405 | e = (*_pred)[n]; |
| 406 | if (_graph.target(e) == n) { |
| 407 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 408 | if (rem < prem) prem = rem; |
| 409 | n = _graph.source(e); |
| 410 | } else { |
| 411 | Value rem = (*_flow)[e]; |
| 412 | if (rem < prem) prem = rem; |
| 413 | n = _graph.target(e); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | n = _target; |
| 418 | e = (*_pred)[n]; |
| 419 | |
| 420 | _flow->set(e, (*_flow)[e] + prem); |
| 421 | n = _graph.source(e); |
| 422 | while (n != _source) { |
| 423 | e = (*_pred)[n]; |
| 424 | if (_graph.target(e) == n) { |
| 425 | _flow->set(e, (*_flow)[e] + prem); |
| 426 | n = _graph.source(e); |
| 427 | } else { |
| 428 | _flow->set(e, (*_flow)[e] - prem); |
| 429 | n = _graph.target(e); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | _flow_value += prem; |
| 434 | return true; |
| 435 | } else { |
| 436 | return false; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | /// \brief Executes the algorithm |
| 441 | /// |
| 442 | /// It runs augmenting phases until the optimal solution is reached. |
| 443 | void start() { |
| 444 | while (augment()) {} |
| 445 | } |
| 446 | |
| 447 | /// \brief Runs the algorithm. |
| 448 | /// |
| 449 | /// It is just a shorthand for: |
| 450 | /// |
| 451 | ///\code |
| 452 | /// ek.init(); |
| 453 | /// ek.start(); |
| 454 | ///\endcode |
| 455 | void run() { |
| 456 | init(); |
| 457 | start(); |
| 458 | } |
| 459 | |
| 460 | /// @} |
| 461 | |
| 462 | /// \name Query Functions |
| 463 | /// The result of the Edmonds-Karp algorithm can be obtained using these |
| 464 | /// functions.\n |
| 465 | /// Before the use of these functions, |
| 466 | /// either run() or start() must be called. |
| 467 | |
| 468 | ///@{ |
| 469 | |
| 470 | /// \brief Returns the value of the maximum flow. |
| 471 | /// |
| 472 | /// Returns the value of the maximum flow by returning the excess |
| 473 | /// of the target node \c t. |
| 474 | |
| 475 | Value flowValue() const { |
| 476 | return _flow_value; |
| 477 | } |
| 478 | |
| 479 | |
| 480 | /// \brief Returns the flow on the arc. |
| 481 | /// |
| 482 | /// Sets the \c flowMap to the flow on the arcs. |
| 483 | Value flow(const Arc& arc) const { |
| 484 | return (*_flow)[arc]; |
| 485 | } |
| 486 | |
| 487 | /// \brief Returns true when the node is on the source side of minimum cut. |
| 488 | /// |
| 489 | |
| 490 | /// Returns true when the node is on the source side of minimum |
| 491 | /// cut. |
| 492 | |
| 493 | bool minCut(const Node& node) const { |
| 494 | return ((*_pred)[node] != INVALID) or node == _source; |
| 495 | } |
| 496 | |
| 497 | /// \brief Returns a minimum value cut. |
| 498 | /// |
| 499 | /// Sets \c cutMap to the characteristic vector of a minimum value cut. |
| 500 | |
| 501 | template <typename CutMap> |
| 502 | void minCutMap(CutMap& cutMap) const { |
| 503 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 504 | cutMap.set(n, (*_pred)[n] != INVALID); |
| 505 | } |
| 506 | cutMap.set(_source, true); |
| 507 | } |
| 508 | |
| 509 | /// @} |
| 510 | |
| 511 | }; |
| 512 | |
| 513 | } |
| 514 | |
| 515 | #endif |