COIN-OR::LEMON - Graph Library

Ticket #314: 86613aa28a0c.patch

File 86613aa28a0c.patch, 4.2 KB (added by Balazs Dezso, 15 years ago)

Fix doc issues

  • lemon/fractional_matching.h

    # HG changeset patch
    # User Balazs Dezso <deba@inf.elte.hu>
    # Date 1267694222 -3600
    # Node ID 86613aa28a0ce5afcae34ad41acd910079f97394
    # Parent  61120524af27864803c669d537d0b9f2484abeb6
    Fix documentation issues (#314)
    
    diff -r 61120524af27 -r 86613aa28a0c lemon/fractional_matching.h
    a b  
    111111  /// solution) can be obtained using the query functions.
    112112  ///
    113113  /// The primal solution is multiplied by
    114   /// \ref MaxWeightedMatching::primalScale "2".
     114  /// \ref MaxFractionalMatching::primalScale "2".
    115115  ///
    116116  /// \tparam GR The undirected graph type the algorithm runs on.
    117117#ifdef DOXYGEN
     
    632632  /// \brief Weighted fractional matching in general graphs
    633633  ///
    634634  /// This class provides an efficient implementation of fractional
    635   /// matching algorithm. The implementation is based on extensive use
    636   /// of priority queues and provides \f$O(nm\log n)\f$ time
    637   /// complexity.
     635  /// matching algorithm. The implementation uses priority queues and
     636  /// provides \f$O(nm\log n)\f$ time complexity.
    638637  ///
    639638  /// The maximum weighted fractional matching is a relaxation of the
    640639  /// maximum weighted matching problem where the odd set constraints
     
    653652  /// problem is the following.
    654653  /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
    655654  /// \f[y_u \ge 0 \quad \forall u \in V\f]
    656   /// \f[\min \sum_{u \in V}y_u \f] ///
     655  /// \f[\min \sum_{u \in V}y_u \f]
    657656  ///
    658657  /// The algorithm can be executed with the run() function.
    659658  /// After it the matching (the primal solution) and the dual solution
     
    661660  ///
    662661  /// If the value type is integer, then the primal and the dual
    663662  /// solutions are multiplied by
    664   /// \ref MaxWeightedMatching::primalScale "2" and
    665   /// \ref MaxWeightedMatching::dualScale "4" respectively.
     663  /// \ref MaxWeightedFractionalMatching::primalScale "2" and
     664  /// \ref MaxWeightedFractionalMatching::dualScale "4" respectively.
    666665  ///
    667666  /// \tparam GR The undirected graph type the algorithm runs on.
    668667  /// \tparam WM The type edge weight map. The default type is
     
    12701269
    12711270    /// \brief Run the algorithm.
    12721271    ///
    1273     /// This method runs the \c %MaxWeightedMatching algorithm.
     1272    /// This method runs the \c %MaxWeightedFractionalMatching algorithm.
    12741273    ///
    12751274    /// \note mwfm.run() is just a shortcut of the following code.
    12761275    /// \code
     
    14001399  /// \brief Weighted fractional perfect matching in general graphs
    14011400  ///
    14021401  /// This class provides an efficient implementation of fractional
    1403   /// matching algorithm. The implementation is based on extensive use
    1404   /// of priority queues and provides \f$O(nm\log n)\f$ time
    1405   /// complexity.
     1402  /// matching algorithm. The implementation uses priority queues and
     1403  /// provides \f$O(nm\log n)\f$ time complexity.
    14061404  ///
    14071405  /// The maximum weighted fractional perfect matching is a relaxation
    14081406  /// of the maximum weighted perfect matching problem where the odd
     
    14201418  /// used to check the result of the algorithm. The dual linear
    14211419  /// problem is the following.
    14221420  /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
    1423   /// \f[\min \sum_{u \in V}y_u \f] ///
     1421  /// \f[\min \sum_{u \in V}y_u \f]
    14241422  ///
    14251423  /// The algorithm can be executed with the run() function.
    14261424  /// After it the matching (the primal solution) and the dual solution
     
    14281426
    14291427  /// If the value type is integer, then the primal and the dual
    14301428  /// solutions are multiplied by
    1431   /// \ref MaxWeightedMatching::primalScale "2" and
    1432   /// \ref MaxWeightedMatching::dualScale "4" respectively.
     1429  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and
     1430  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4" respectively.
    14331431  ///
    14341432  /// \tparam GR The undirected graph type the algorithm runs on.
    14351433  /// \tparam WM The type edge weight map. The default type is
     
    20052003
    20062004    /// \brief Run the algorithm.
    20072005    ///
    2008     /// This method runs the \c %MaxWeightedMatching algorithm.
     2006    /// This method runs the \c %MaxWeightedPerfectFractionalMatching
     2007    /// algorithm.
    20092008    ///
    20102009    /// \note mwfm.run() is just a shortcut of the following code.
    20112010    /// \code