| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2010 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_MAX_CLIQUE_H |
| 20 | #define LEMON_MAX_CLIQUE_H |
| 21 | |
| 22 | /// \ingroup approx_algs |
| 23 | /// |
| 24 | /// \file |
| 25 | /// \brief An effficient heuristic algorithm for the maximum clique problem |
| 26 | |
| 27 | #include <vector> |
| 28 | #include <limits> |
| 29 | #include <lemon/core.h> |
| 30 | #include <lemon/random.h> |
| 31 | |
| 32 | namespace lemon { |
| 33 | |
| 34 | /// \addtogroup approx_algs |
| 35 | /// @{ |
| 36 | |
| 37 | /// \brief Implementation of an efficient heuristic algorithm |
| 38 | /// for the maximum clique problem. |
| 39 | /// |
| 40 | /// \ref MaxClique implements the iterated local search algorithm of |
| 41 | /// Grosso, Locatelli, and Pullan for solving the \e maximum \e clique |
| 42 | /// \e problem \ref grosso08maxclique. |
| 43 | /// It is to find the largest complete subgraph (\e clique) in an |
| 44 | /// undirected graph, i.e., the largest set of nodes where each |
| 45 | /// pair of nodes is connected. |
| 46 | /// |
| 47 | /// This class provides a simple but highly efficient and robust heuristic |
| 48 | /// method that quickly finds a large clique, but not necessarily the |
| 49 | /// largest one. |
| 50 | /// |
| 51 | /// \tparam GR The undirected graph type the algorithm runs on. |
| 52 | /// |
| 53 | /// \note %MaxClique provides three different node selection rules, |
| 54 | /// from which the most powerful one is used by default. |
| 55 | /// For more information, see \ref SelectionRule. |
| 56 | template <typename GR> |
| 57 | class MaxClique |
| 58 | { |
| 59 | public: |
| 60 | |
| 61 | /// \brief Constants for specifying the node selection rule. |
| 62 | /// |
| 63 | /// Enum type containing constants for specifying the node selection rule |
| 64 | /// for the \ref run() function. |
| 65 | /// |
| 66 | /// During the algorithm, nodes are selected for addition to the current |
| 67 | /// clique according to the applied rule. |
| 68 | /// In general, the PENALTY_BASED rule turned out to be the most powerful |
| 69 | /// and the most robust, thus it is the default option. |
| 70 | /// However, another selection rule can be specified using the \ref run() |
| 71 | /// function with the proper parameter. |
| 72 | enum SelectionRule { |
| 73 | |
| 74 | /// A node is selected randomly without any evaluation at each step. |
| 75 | RANDOM, |
| 76 | |
| 77 | /// A node of maximum degree is selected randomly at each step. |
| 78 | DEGREE_BASED, |
| 79 | |
| 80 | /// A node of minimum penalty is selected randomly at each step. |
| 81 | /// The node penalties are updated adaptively after each stage of the |
| 82 | /// search process. |
| 83 | PENALTY_BASED |
| 84 | }; |
| 85 | |
| 86 | private: |
| 87 | |
| 88 | TEMPLATE_GRAPH_TYPEDEFS(GR); |
| 89 | |
| 90 | typedef std::vector<int> IntVector; |
| 91 | typedef std::vector<char> BoolVector; |
| 92 | typedef std::vector<BoolVector> BoolMatrix; |
| 93 | // Note: vector<char> is used instead of vector<bool> for efficiency reasons |
| 94 | |
| 95 | const GR &_graph; |
| 96 | IntNodeMap _id; |
| 97 | |
| 98 | // Internal matrix representation of the graph |
| 99 | BoolMatrix _gr; |
| 100 | int _n; |
| 101 | |
| 102 | // The current clique |
| 103 | BoolVector _clique; |
| 104 | int _size; |
| 105 | |
| 106 | // The best clique found so far |
| 107 | BoolVector _best_clique; |
| 108 | int _best_size; |
| 109 | |
| 110 | // The "distances" of the nodes from the current clique. |
| 111 | // _delta[u] is the number of nodes in the clique that are |
| 112 | // not connected with u. |
| 113 | IntVector _delta; |
| 114 | |
| 115 | // The current tabu set |
| 116 | BoolVector _tabu; |
| 117 | |
| 118 | // Random number generator |
| 119 | Random _rnd; |
| 120 | |
| 121 | private: |
| 122 | |
| 123 | // Implementation of the RANDOM node selection rule. |
| 124 | class RandomSelectionRule |
| 125 | { |
| 126 | private: |
| 127 | |
| 128 | // References to the MaxClique class |
| 129 | const BoolVector &_clique; |
| 130 | const IntVector &_delta; |
| 131 | const BoolVector &_tabu; |
| 132 | Random &_rnd; |
| 133 | |
| 134 | // Pivot rule data |
| 135 | int _n; |
| 136 | |
| 137 | public: |
| 138 | |
| 139 | // Constructor |
| 140 | RandomSelectionRule(MaxClique &mc) : |
| 141 | _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
| 142 | _rnd(mc._rnd), _n(mc._n) |
| 143 | {} |
| 144 | |
| 145 | // Return a node index for a feasible add move or -1 if no one exists |
| 146 | int nextFeasibleAddNode() const { |
| 147 | int start_node = _rnd[_n]; |
| 148 | for (int i = start_node; i != _n; i++) { |
| 149 | if (_delta[i] == 0 && !_tabu[i]) return i; |
| 150 | } |
| 151 | for (int i = 0; i != start_node; i++) { |
| 152 | if (_delta[i] == 0 && !_tabu[i]) return i; |
| 153 | } |
| 154 | return -1; |
| 155 | } |
| 156 | |
| 157 | // Return a node index for a feasible swap move or -1 if no one exists |
| 158 | int nextFeasibleSwapNode() const { |
| 159 | int start_node = _rnd[_n]; |
| 160 | for (int i = start_node; i != _n; i++) { |
| 161 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
| 162 | } |
| 163 | for (int i = 0; i != start_node; i++) { |
| 164 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
| 165 | } |
| 166 | return -1; |
| 167 | } |
| 168 | |
| 169 | // Return a node index for an add move or -1 if no one exists |
| 170 | int nextAddNode() const { |
| 171 | int start_node = _rnd[_n]; |
| 172 | for (int i = start_node; i != _n; i++) { |
| 173 | if (_delta[i] == 0) return i; |
| 174 | } |
| 175 | for (int i = 0; i != start_node; i++) { |
| 176 | if (_delta[i] == 0) return i; |
| 177 | } |
| 178 | return -1; |
| 179 | } |
| 180 | |
| 181 | // Update internal data structures between stages (if necessary) |
| 182 | void update() {} |
| 183 | |
| 184 | }; //class RandomSelectionRule |
| 185 | |
| 186 | |
| 187 | // Implementation of the DEGREE_BASED node selection rule. |
| 188 | class DegreeBasedSelectionRule |
| 189 | { |
| 190 | private: |
| 191 | |
| 192 | // References to the MaxClique class |
| 193 | const BoolVector &_clique; |
| 194 | const IntVector &_delta; |
| 195 | const BoolVector &_tabu; |
| 196 | Random &_rnd; |
| 197 | |
| 198 | // Pivot rule data |
| 199 | int _n; |
| 200 | IntVector _deg; |
| 201 | |
| 202 | public: |
| 203 | |
| 204 | // Constructor |
| 205 | DegreeBasedSelectionRule(MaxClique &mc) : |
| 206 | _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
| 207 | _rnd(mc._rnd), _n(mc._n), _deg(_n) |
| 208 | { |
| 209 | for (int i = 0; i != _n; i++) { |
| 210 | int d = 0; |
| 211 | BoolVector &row = mc._gr[i]; |
| 212 | for (int j = 0; j != _n; j++) { |
| 213 | if (row[j]) d++; |
| 214 | } |
| 215 | _deg[i] = d; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | // Return a node index for a feasible add move or -1 if no one exists |
| 220 | int nextFeasibleAddNode() const { |
| 221 | int start_node = _rnd[_n]; |
| 222 | int node = -1, max_deg = -1; |
| 223 | for (int i = start_node; i != _n; i++) { |
| 224 | if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) { |
| 225 | node = i; |
| 226 | max_deg = _deg[i]; |
| 227 | } |
| 228 | } |
| 229 | for (int i = 0; i != start_node; i++) { |
| 230 | if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) { |
| 231 | node = i; |
| 232 | max_deg = _deg[i]; |
| 233 | } |
| 234 | } |
| 235 | return node; |
| 236 | } |
| 237 | |
| 238 | // Return a node index for a feasible swap move or -1 if no one exists |
| 239 | int nextFeasibleSwapNode() const { |
| 240 | int start_node = _rnd[_n]; |
| 241 | int node = -1, max_deg = -1; |
| 242 | for (int i = start_node; i != _n; i++) { |
| 243 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| 244 | _deg[i] > max_deg) { |
| 245 | node = i; |
| 246 | max_deg = _deg[i]; |
| 247 | } |
| 248 | } |
| 249 | for (int i = 0; i != start_node; i++) { |
| 250 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| 251 | _deg[i] > max_deg) { |
| 252 | node = i; |
| 253 | max_deg = _deg[i]; |
| 254 | } |
| 255 | } |
| 256 | return node; |
| 257 | } |
| 258 | |
| 259 | // Return a node index for an add move or -1 if no one exists |
| 260 | int nextAddNode() const { |
| 261 | int start_node = _rnd[_n]; |
| 262 | int node = -1, max_deg = -1; |
| 263 | for (int i = start_node; i != _n; i++) { |
| 264 | if (_delta[i] == 0 && _deg[i] > max_deg) { |
| 265 | node = i; |
| 266 | max_deg = _deg[i]; |
| 267 | } |
| 268 | } |
| 269 | for (int i = 0; i != start_node; i++) { |
| 270 | if (_delta[i] == 0 && _deg[i] > max_deg) { |
| 271 | node = i; |
| 272 | max_deg = _deg[i]; |
| 273 | } |
| 274 | } |
| 275 | return node; |
| 276 | } |
| 277 | |
| 278 | // Update internal data structures between stages (if necessary) |
| 279 | void update() {} |
| 280 | |
| 281 | }; //class DegreeBasedSelectionRule |
| 282 | |
| 283 | |
| 284 | // Implementation of the PENALTY_BASED node selection rule. |
| 285 | class PenaltyBasedSelectionRule |
| 286 | { |
| 287 | private: |
| 288 | |
| 289 | // References to the MaxClique class |
| 290 | const BoolVector &_clique; |
| 291 | const IntVector &_delta; |
| 292 | const BoolVector &_tabu; |
| 293 | Random &_rnd; |
| 294 | |
| 295 | // Pivot rule data |
| 296 | int _n; |
| 297 | IntVector _penalty; |
| 298 | |
| 299 | public: |
| 300 | |
| 301 | // Constructor |
| 302 | PenaltyBasedSelectionRule(MaxClique &mc) : |
| 303 | _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
| 304 | _rnd(mc._rnd), _n(mc._n), _penalty(_n, 0) |
| 305 | {} |
| 306 | |
| 307 | // Return a node index for a feasible add move or -1 if no one exists |
| 308 | int nextFeasibleAddNode() const { |
| 309 | int start_node = _rnd[_n]; |
| 310 | int node = -1, min_p = std::numeric_limits<int>::max(); |
| 311 | for (int i = start_node; i != _n; i++) { |
| 312 | if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) { |
| 313 | node = i; |
| 314 | min_p = _penalty[i]; |
| 315 | } |
| 316 | } |
| 317 | for (int i = 0; i != start_node; i++) { |
| 318 | if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) { |
| 319 | node = i; |
| 320 | min_p = _penalty[i]; |
| 321 | } |
| 322 | } |
| 323 | return node; |
| 324 | } |
| 325 | |
| 326 | // Return a node index for a feasible swap move or -1 if no one exists |
| 327 | int nextFeasibleSwapNode() const { |
| 328 | int start_node = _rnd[_n]; |
| 329 | int node = -1, min_p = std::numeric_limits<int>::max(); |
| 330 | for (int i = start_node; i != _n; i++) { |
| 331 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| 332 | _penalty[i] < min_p) { |
| 333 | node = i; |
| 334 | min_p = _penalty[i]; |
| 335 | } |
| 336 | } |
| 337 | for (int i = 0; i != start_node; i++) { |
| 338 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| 339 | _penalty[i] < min_p) { |
| 340 | node = i; |
| 341 | min_p = _penalty[i]; |
| 342 | } |
| 343 | } |
| 344 | return node; |
| 345 | } |
| 346 | |
| 347 | // Return a node index for an add move or -1 if no one exists |
| 348 | int nextAddNode() const { |
| 349 | int start_node = _rnd[_n]; |
| 350 | int node = -1, min_p = std::numeric_limits<int>::max(); |
| 351 | for (int i = start_node; i != _n; i++) { |
| 352 | if (_delta[i] == 0 && _penalty[i] < min_p) { |
| 353 | node = i; |
| 354 | min_p = _penalty[i]; |
| 355 | } |
| 356 | } |
| 357 | for (int i = 0; i != start_node; i++) { |
| 358 | if (_delta[i] == 0 && _penalty[i] < min_p) { |
| 359 | node = i; |
| 360 | min_p = _penalty[i]; |
| 361 | } |
| 362 | } |
| 363 | return node; |
| 364 | } |
| 365 | |
| 366 | // Update internal data structures between stages (if necessary) |
| 367 | void update() {} |
| 368 | |
| 369 | }; //class PenaltyBasedSelectionRule |
| 370 | |
| 371 | public: |
| 372 | |
| 373 | /// \brief Constructor. |
| 374 | /// |
| 375 | /// Constructor. |
| 376 | /// The global \ref rnd "random number generator instance" is used |
| 377 | /// during the algorithm. |
| 378 | /// |
| 379 | /// \param graph The undirected graph the algorithm runs on. |
| 380 | MaxClique(const GR& graph) : |
| 381 | _graph(graph), _id(_graph), _rnd(rnd) |
| 382 | {} |
| 383 | |
| 384 | /// \brief Constructor with random seed. |
| 385 | /// |
| 386 | /// Constructor with random seed. |
| 387 | /// |
| 388 | /// \param graph The undirected graph the algorithm runs on. |
| 389 | /// \param seed Seed value for the internal random number generator |
| 390 | /// that is used during the algorithm. |
| 391 | MaxClique(const GR& graph, int seed) : |
| 392 | _graph(graph), _id(_graph), _rnd(seed) |
| 393 | {} |
| 394 | |
| 395 | /// \brief Constructor with random number generator. |
| 396 | /// |
| 397 | /// Constructor with random number generator. |
| 398 | /// |
| 399 | /// \param graph The undirected graph the algorithm runs on. |
| 400 | /// \param random A random number generator that is used during the |
| 401 | /// algorithm. |
| 402 | MaxClique(const GR& graph, const Random& random) : |
| 403 | _graph(graph), _id(_graph), _rnd(random) |
| 404 | {} |
| 405 | |
| 406 | /// \name Execution Control |
| 407 | /// @{ |
| 408 | |
| 409 | /// \brief Runs the algorithm. |
| 410 | /// |
| 411 | /// This function runs the algorithm. |
| 412 | /// |
| 413 | /// \param step_num The maximum number of node selections (steps) |
| 414 | /// during the search process. |
| 415 | /// This parameter controls the running time and the success of the |
| 416 | /// algorithm. For larger values, the algorithm runs slower but it more |
| 417 | /// likely finds larger cliques. For smaller values, the algorithm is |
| 418 | /// faster but probably gives worse results. |
| 419 | /// \param rule The node selection rule. For more information, see |
| 420 | /// \ref SelectionRule. |
| 421 | /// |
| 422 | /// \return The size of the found clique. |
| 423 | int run(int step_num = 100000, |
| 424 | SelectionRule rule = PENALTY_BASED) |
| 425 | { |
| 426 | switch (rule) { |
| 427 | case RANDOM: |
| 428 | return start<RandomSelectionRule>(step_num); |
| 429 | case DEGREE_BASED: |
| 430 | return start<DegreeBasedSelectionRule>(step_num); |
| 431 | case PENALTY_BASED: |
| 432 | return start<PenaltyBasedSelectionRule>(step_num); |
| 433 | } |
| 434 | return 0; // avoid warning |
| 435 | } |
| 436 | |
| 437 | /// @} |
| 438 | |
| 439 | /// \name Query Functions |
| 440 | /// @{ |
| 441 | |
| 442 | /// \brief The size of the found clique |
| 443 | /// |
| 444 | /// This function returns the size of the found clique. |
| 445 | /// |
| 446 | /// \pre run() must be called before using this function. |
| 447 | int cliqueSize() const { |
| 448 | return _best_size; |
| 449 | } |
| 450 | |
| 451 | /// \brief Gives back the found clique in a \c bool node map |
| 452 | /// |
| 453 | /// This function gives back the characteristic vector of the found |
| 454 | /// clique in the given node map. |
| 455 | /// It must be a \ref concepts::WriteMap "writable" node map with |
| 456 | /// \c bool (or convertible) value type. |
| 457 | /// |
| 458 | /// \pre run() must be called before using this function. |
| 459 | template <typename CliqueMap> |
| 460 | void cliqueMap(CliqueMap &map) const { |
| 461 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 462 | map[n] = static_cast<bool>(_best_clique[_id[n]]); |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | /// @} |
| 467 | |
| 468 | private: |
| 469 | |
| 470 | // Adds a node to the current clique |
| 471 | void addCliqueNode(int u) { |
| 472 | if (_clique[u]) return; |
| 473 | _clique[u] = true; |
| 474 | _size++; |
| 475 | BoolVector &row = _gr[u]; |
| 476 | for (int i = 0; i != _n; i++) { |
| 477 | if (!row[i]) _delta[i]++; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | // Removes a node from the current clique |
| 482 | void delCliqueNode(int u) { |
| 483 | if (!_clique[u]) return; |
| 484 | _clique[u] = false; |
| 485 | _size--; |
| 486 | BoolVector &row = _gr[u]; |
| 487 | for (int i = 0; i != _n; i++) { |
| 488 | if (!row[i]) _delta[i]--; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | // Executes the algorithm |
| 493 | template <typename SelectionRuleImpl> |
| 494 | int start(int max_select) { |
| 495 | // Options for the restart rule |
| 496 | const bool delta_based_restart = true; |
| 497 | const int restart_delta_limit = 4; |
| 498 | |
| 499 | // Initialize data structures |
| 500 | _n = countNodes(_graph); |
| 501 | int ui = 0; |
| 502 | for (NodeIt u(_graph); u != INVALID; ++u) { |
| 503 | _id[u] = ui++; |
| 504 | } |
| 505 | _gr.clear(); |
| 506 | _gr.resize(_n, BoolVector(_n, false)); |
| 507 | ui = 0; |
| 508 | for (NodeIt u(_graph); u != INVALID; ++u) { |
| 509 | for (IncEdgeIt e(_graph, u); e != INVALID; ++e) { |
| 510 | int vi = _id[_graph.runningNode(e)]; |
| 511 | _gr[ui][vi] = true; |
| 512 | _gr[vi][ui] = true; |
| 513 | } |
| 514 | ++ui; |
| 515 | } |
| 516 | |
| 517 | _clique.clear(); |
| 518 | _clique.resize(_n, false); |
| 519 | _size = 0; |
| 520 | _best_clique.clear(); |
| 521 | _best_clique.resize(_n, false); |
| 522 | _best_size = 0; |
| 523 | _delta.clear(); |
| 524 | _delta.resize(_n, 0); |
| 525 | _tabu.clear(); |
| 526 | _tabu.resize(_n, false); |
| 527 | |
| 528 | if (_n == 0) return 0; |
| 529 | if (_n == 1) { |
| 530 | _best_clique[0] = true; |
| 531 | _best_size = 1; |
| 532 | return _best_size; |
| 533 | } |
| 534 | |
| 535 | // Iterated local search |
| 536 | SelectionRuleImpl sel_method(*this); |
| 537 | int select = 0; |
| 538 | IntVector restart_nodes; |
| 539 | |
| 540 | while (select < max_select) { |
| 541 | |
| 542 | // Perturbation/restart |
| 543 | if (delta_based_restart) { |
| 544 | restart_nodes.clear(); |
| 545 | for (int i = 0; i != _n; i++) { |
| 546 | if (_delta[i] >= restart_delta_limit) |
| 547 | restart_nodes.push_back(i); |
| 548 | } |
| 549 | } |
| 550 | int rs_node = -1; |
| 551 | if (restart_nodes.size() > 0) { |
| 552 | rs_node = restart_nodes[_rnd[restart_nodes.size()]]; |
| 553 | } else { |
| 554 | rs_node = _rnd[_n]; |
| 555 | } |
| 556 | BoolVector &row = _gr[rs_node]; |
| 557 | for (int i = 0; i != _n; i++) { |
| 558 | if (_clique[i] && !row[i]) delCliqueNode(i); |
| 559 | } |
| 560 | addCliqueNode(rs_node); |
| 561 | |
| 562 | // Local search |
| 563 | _tabu.clear(); |
| 564 | _tabu.resize(_n, false); |
| 565 | bool tabu_empty = true; |
| 566 | int max_swap = _size; |
| 567 | while (select < max_select) { |
| 568 | select++; |
| 569 | int u; |
| 570 | if ((u = sel_method.nextFeasibleAddNode()) != -1) { |
| 571 | // Feasible add move |
| 572 | addCliqueNode(u); |
| 573 | if (tabu_empty) max_swap = _size; |
| 574 | } |
| 575 | else if ((u = sel_method.nextFeasibleSwapNode()) != -1) { |
| 576 | // Feasible swap move |
| 577 | int v = -1; |
| 578 | BoolVector &row = _gr[u]; |
| 579 | for (int i = 0; i != _n; i++) { |
| 580 | if (_clique[i] && !row[i]) { |
| 581 | v = i; |
| 582 | break; |
| 583 | } |
| 584 | } |
| 585 | addCliqueNode(u); |
| 586 | delCliqueNode(v); |
| 587 | _tabu[v] = true; |
| 588 | tabu_empty = false; |
| 589 | if (--max_swap <= 0) break; |
| 590 | } |
| 591 | else if ((u = sel_method.nextAddNode()) != -1) { |
| 592 | // Non-feasible add move |
| 593 | addCliqueNode(u); |
| 594 | } |
| 595 | else break; |
| 596 | } |
| 597 | if (_size > _best_size) { |
| 598 | _best_clique = _clique; |
| 599 | _best_size = _size; |
| 600 | if (_best_size == _n) return _best_size; |
| 601 | } |
| 602 | sel_method.update(); |
| 603 | } |
| 604 | |
| 605 | return _best_size; |
| 606 | } |
| 607 | |
| 608 | }; //class MaxClique |
| 609 | |
| 610 | ///@} |
| 611 | |
| 612 | } //namespace lemon |
| 613 | |
| 614 | |
| 615 | #endif //LEMON_MAX_CLIQUE_H |