| | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2010 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
| | 20 | #define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
| | 21 | |
| | 22 | /// \ingroup approx_algs |
| | 23 | /// |
| | 24 | /// \file |
| | 25 | /// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan |
| | 26 | /// for the maximum clique problem |
| | 27 | |
| | 28 | #include <vector> |
| | 29 | #include <limits> |
| | 30 | #include <lemon/core.h> |
| | 31 | #include <lemon/random.h> |
| | 32 | |
| | 33 | namespace lemon { |
| | 34 | |
| | 35 | /// \addtogroup approx_algs |
| | 36 | /// @{ |
| | 37 | |
| | 38 | /// \brief Implementation of the iterated local search algorithm of Grosso, |
| | 39 | /// Locatelli, and Pullan for the maximum clique problem |
| | 40 | /// |
| | 41 | /// \ref GrossoLocatelliPullanMc implements the iterated local search |
| | 42 | /// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum |
| | 43 | /// \e clique \e problem \ref grosso08maxclique. |
| | 44 | /// It is to find the largest complete subgraph (\e clique) in an |
| | 45 | /// undirected graph, i.e., the largest set of nodes where each |
| | 46 | /// pair of nodes is connected. |
| | 47 | /// |
| | 48 | /// This class provides a simple but highly efficient and robust heuristic |
| | 49 | /// method that quickly finds a large clique, but not necessarily the |
| | 50 | /// largest one. |
| | 51 | /// |
| | 52 | /// \tparam GR The undirected graph type the algorithm runs on. |
| | 53 | /// |
| | 54 | /// \note %GrossoLocatelliPullanMc provides three different node selection |
| | 55 | /// rules, from which the most powerful one is used by default. |
| | 56 | /// For more information, see \ref SelectionRule. |
| | 57 | template <typename GR> |
| | 58 | class GrossoLocatelliPullanMc |
| | 59 | { |
| | 60 | public: |
| | 61 | |
| | 62 | /// \brief Constants for specifying the node selection rule. |
| | 63 | /// |
| | 64 | /// Enum type containing constants for specifying the node selection rule |
| | 65 | /// for the \ref run() function. |
| | 66 | /// |
| | 67 | /// During the algorithm, nodes are selected for addition to the current |
| | 68 | /// clique according to the applied rule. |
| | 69 | /// In general, the PENALTY_BASED rule turned out to be the most powerful |
| | 70 | /// and the most robust, thus it is the default option. |
| | 71 | /// However, another selection rule can be specified using the \ref run() |
| | 72 | /// function with the proper parameter. |
| | 73 | enum SelectionRule { |
| | 74 | |
| | 75 | /// A node is selected randomly without any evaluation at each step. |
| | 76 | RANDOM, |
| | 77 | |
| | 78 | /// A node of maximum degree is selected randomly at each step. |
| | 79 | DEGREE_BASED, |
| | 80 | |
| | 81 | /// A node of minimum penalty is selected randomly at each step. |
| | 82 | /// The node penalties are updated adaptively after each stage of the |
| | 83 | /// search process. |
| | 84 | PENALTY_BASED |
| | 85 | }; |
| | 86 | |
| | 87 | private: |
| | 88 | |
| | 89 | TEMPLATE_GRAPH_TYPEDEFS(GR); |
| | 90 | |
| | 91 | typedef std::vector<int> IntVector; |
| | 92 | typedef std::vector<char> BoolVector; |
| | 93 | typedef std::vector<BoolVector> BoolMatrix; |
| | 94 | // Note: vector<char> is used instead of vector<bool> for efficiency reasons |
| | 95 | |
| | 96 | const GR &_graph; |
| | 97 | IntNodeMap _id; |
| | 98 | |
| | 99 | // Internal matrix representation of the graph |
| | 100 | BoolMatrix _gr; |
| | 101 | int _n; |
| | 102 | |
| | 103 | // The current clique |
| | 104 | BoolVector _clique; |
| | 105 | int _size; |
| | 106 | |
| | 107 | // The best clique found so far |
| | 108 | BoolVector _best_clique; |
| | 109 | int _best_size; |
| | 110 | |
| | 111 | // The "distances" of the nodes from the current clique. |
| | 112 | // _delta[u] is the number of nodes in the clique that are |
| | 113 | // not connected with u. |
| | 114 | IntVector _delta; |
| | 115 | |
| | 116 | // The current tabu set |
| | 117 | BoolVector _tabu; |
| | 118 | |
| | 119 | // Random number generator |
| | 120 | Random _rnd; |
| | 121 | |
| | 122 | private: |
| | 123 | |
| | 124 | // Implementation of the RANDOM node selection rule. |
| | 125 | class RandomSelectionRule |
| | 126 | { |
| | 127 | private: |
| | 128 | |
| | 129 | // References to the algorithm instance |
| | 130 | const BoolVector &_clique; |
| | 131 | const IntVector &_delta; |
| | 132 | const BoolVector &_tabu; |
| | 133 | Random &_rnd; |
| | 134 | |
| | 135 | // Pivot rule data |
| | 136 | int _n; |
| | 137 | |
| | 138 | public: |
| | 139 | |
| | 140 | // Constructor |
| | 141 | RandomSelectionRule(GrossoLocatelliPullanMc &mc) : |
| | 142 | _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
| | 143 | _rnd(mc._rnd), _n(mc._n) |
| | 144 | {} |
| | 145 | |
| | 146 | // Return a node index for a feasible add move or -1 if no one exists |
| | 147 | int nextFeasibleAddNode() const { |
| | 148 | int start_node = _rnd[_n]; |
| | 149 | for (int i = start_node; i != _n; i++) { |
| | 150 | if (_delta[i] == 0 && !_tabu[i]) return i; |
| | 151 | } |
| | 152 | for (int i = 0; i != start_node; i++) { |
| | 153 | if (_delta[i] == 0 && !_tabu[i]) return i; |
| | 154 | } |
| | 155 | return -1; |
| | 156 | } |
| | 157 | |
| | 158 | // Return a node index for a feasible swap move or -1 if no one exists |
| | 159 | int nextFeasibleSwapNode() const { |
| | 160 | int start_node = _rnd[_n]; |
| | 161 | for (int i = start_node; i != _n; i++) { |
| | 162 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
| | 163 | } |
| | 164 | for (int i = 0; i != start_node; i++) { |
| | 165 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
| | 166 | } |
| | 167 | return -1; |
| | 168 | } |
| | 169 | |
| | 170 | // Return a node index for an add move or -1 if no one exists |
| | 171 | int nextAddNode() const { |
| | 172 | int start_node = _rnd[_n]; |
| | 173 | for (int i = start_node; i != _n; i++) { |
| | 174 | if (_delta[i] == 0) return i; |
| | 175 | } |
| | 176 | for (int i = 0; i != start_node; i++) { |
| | 177 | if (_delta[i] == 0) return i; |
| | 178 | } |
| | 179 | return -1; |
| | 180 | } |
| | 181 | |
| | 182 | // Update internal data structures between stages (if necessary) |
| | 183 | void update() {} |
| | 184 | |
| | 185 | }; //class RandomSelectionRule |
| | 186 | |
| | 187 | |
| | 188 | // Implementation of the DEGREE_BASED node selection rule. |
| | 189 | class DegreeBasedSelectionRule |
| | 190 | { |
| | 191 | private: |
| | 192 | |
| | 193 | // References to the algorithm instance |
| | 194 | const BoolVector &_clique; |
| | 195 | const IntVector &_delta; |
| | 196 | const BoolVector &_tabu; |
| | 197 | Random &_rnd; |
| | 198 | |
| | 199 | // Pivot rule data |
| | 200 | int _n; |
| | 201 | IntVector _deg; |
| | 202 | |
| | 203 | public: |
| | 204 | |
| | 205 | // Constructor |
| | 206 | DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) : |
| | 207 | _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
| | 208 | _rnd(mc._rnd), _n(mc._n), _deg(_n) |
| | 209 | { |
| | 210 | for (int i = 0; i != _n; i++) { |
| | 211 | int d = 0; |
| | 212 | BoolVector &row = mc._gr[i]; |
| | 213 | for (int j = 0; j != _n; j++) { |
| | 214 | if (row[j]) d++; |
| | 215 | } |
| | 216 | _deg[i] = d; |
| | 217 | } |
| | 218 | } |
| | 219 | |
| | 220 | // Return a node index for a feasible add move or -1 if no one exists |
| | 221 | int nextFeasibleAddNode() const { |
| | 222 | int start_node = _rnd[_n]; |
| | 223 | int node = -1, max_deg = -1; |
| | 224 | for (int i = start_node; i != _n; i++) { |
| | 225 | if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) { |
| | 226 | node = i; |
| | 227 | max_deg = _deg[i]; |
| | 228 | } |
| | 229 | } |
| | 230 | for (int i = 0; i != start_node; i++) { |
| | 231 | if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) { |
| | 232 | node = i; |
| | 233 | max_deg = _deg[i]; |
| | 234 | } |
| | 235 | } |
| | 236 | return node; |
| | 237 | } |
| | 238 | |
| | 239 | // Return a node index for a feasible swap move or -1 if no one exists |
| | 240 | int nextFeasibleSwapNode() const { |
| | 241 | int start_node = _rnd[_n]; |
| | 242 | int node = -1, max_deg = -1; |
| | 243 | for (int i = start_node; i != _n; i++) { |
| | 244 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| | 245 | _deg[i] > max_deg) { |
| | 246 | node = i; |
| | 247 | max_deg = _deg[i]; |
| | 248 | } |
| | 249 | } |
| | 250 | for (int i = 0; i != start_node; i++) { |
| | 251 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| | 252 | _deg[i] > max_deg) { |
| | 253 | node = i; |
| | 254 | max_deg = _deg[i]; |
| | 255 | } |
| | 256 | } |
| | 257 | return node; |
| | 258 | } |
| | 259 | |
| | 260 | // Return a node index for an add move or -1 if no one exists |
| | 261 | int nextAddNode() const { |
| | 262 | int start_node = _rnd[_n]; |
| | 263 | int node = -1, max_deg = -1; |
| | 264 | for (int i = start_node; i != _n; i++) { |
| | 265 | if (_delta[i] == 0 && _deg[i] > max_deg) { |
| | 266 | node = i; |
| | 267 | max_deg = _deg[i]; |
| | 268 | } |
| | 269 | } |
| | 270 | for (int i = 0; i != start_node; i++) { |
| | 271 | if (_delta[i] == 0 && _deg[i] > max_deg) { |
| | 272 | node = i; |
| | 273 | max_deg = _deg[i]; |
| | 274 | } |
| | 275 | } |
| | 276 | return node; |
| | 277 | } |
| | 278 | |
| | 279 | // Update internal data structures between stages (if necessary) |
| | 280 | void update() {} |
| | 281 | |
| | 282 | }; //class DegreeBasedSelectionRule |
| | 283 | |
| | 284 | |
| | 285 | // Implementation of the PENALTY_BASED node selection rule. |
| | 286 | class PenaltyBasedSelectionRule |
| | 287 | { |
| | 288 | private: |
| | 289 | |
| | 290 | // References to the algorithm instance |
| | 291 | const BoolVector &_clique; |
| | 292 | const IntVector &_delta; |
| | 293 | const BoolVector &_tabu; |
| | 294 | Random &_rnd; |
| | 295 | |
| | 296 | // Pivot rule data |
| | 297 | int _n; |
| | 298 | IntVector _penalty; |
| | 299 | |
| | 300 | public: |
| | 301 | |
| | 302 | // Constructor |
| | 303 | PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) : |
| | 304 | _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
| | 305 | _rnd(mc._rnd), _n(mc._n), _penalty(_n, 0) |
| | 306 | {} |
| | 307 | |
| | 308 | // Return a node index for a feasible add move or -1 if no one exists |
| | 309 | int nextFeasibleAddNode() const { |
| | 310 | int start_node = _rnd[_n]; |
| | 311 | int node = -1, min_p = std::numeric_limits<int>::max(); |
| | 312 | for (int i = start_node; i != _n; i++) { |
| | 313 | if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) { |
| | 314 | node = i; |
| | 315 | min_p = _penalty[i]; |
| | 316 | } |
| | 317 | } |
| | 318 | for (int i = 0; i != start_node; i++) { |
| | 319 | if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) { |
| | 320 | node = i; |
| | 321 | min_p = _penalty[i]; |
| | 322 | } |
| | 323 | } |
| | 324 | return node; |
| | 325 | } |
| | 326 | |
| | 327 | // Return a node index for a feasible swap move or -1 if no one exists |
| | 328 | int nextFeasibleSwapNode() const { |
| | 329 | int start_node = _rnd[_n]; |
| | 330 | int node = -1, min_p = std::numeric_limits<int>::max(); |
| | 331 | for (int i = start_node; i != _n; i++) { |
| | 332 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| | 333 | _penalty[i] < min_p) { |
| | 334 | node = i; |
| | 335 | min_p = _penalty[i]; |
| | 336 | } |
| | 337 | } |
| | 338 | for (int i = 0; i != start_node; i++) { |
| | 339 | if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
| | 340 | _penalty[i] < min_p) { |
| | 341 | node = i; |
| | 342 | min_p = _penalty[i]; |
| | 343 | } |
| | 344 | } |
| | 345 | return node; |
| | 346 | } |
| | 347 | |
| | 348 | // Return a node index for an add move or -1 if no one exists |
| | 349 | int nextAddNode() const { |
| | 350 | int start_node = _rnd[_n]; |
| | 351 | int node = -1, min_p = std::numeric_limits<int>::max(); |
| | 352 | for (int i = start_node; i != _n; i++) { |
| | 353 | if (_delta[i] == 0 && _penalty[i] < min_p) { |
| | 354 | node = i; |
| | 355 | min_p = _penalty[i]; |
| | 356 | } |
| | 357 | } |
| | 358 | for (int i = 0; i != start_node; i++) { |
| | 359 | if (_delta[i] == 0 && _penalty[i] < min_p) { |
| | 360 | node = i; |
| | 361 | min_p = _penalty[i]; |
| | 362 | } |
| | 363 | } |
| | 364 | return node; |
| | 365 | } |
| | 366 | |
| | 367 | // Update internal data structures between stages (if necessary) |
| | 368 | void update() {} |
| | 369 | |
| | 370 | }; //class PenaltyBasedSelectionRule |
| | 371 | |
| | 372 | public: |
| | 373 | |
| | 374 | /// \brief Constructor. |
| | 375 | /// |
| | 376 | /// Constructor. |
| | 377 | /// The global \ref rnd "random number generator instance" is used |
| | 378 | /// during the algorithm. |
| | 379 | /// |
| | 380 | /// \param graph The undirected graph the algorithm runs on. |
| | 381 | GrossoLocatelliPullanMc(const GR& graph) : |
| | 382 | _graph(graph), _id(_graph), _rnd(rnd) |
| | 383 | {} |
| | 384 | |
| | 385 | /// \brief Constructor with random seed. |
| | 386 | /// |
| | 387 | /// Constructor with random seed. |
| | 388 | /// |
| | 389 | /// \param graph The undirected graph the algorithm runs on. |
| | 390 | /// \param seed Seed value for the internal random number generator |
| | 391 | /// that is used during the algorithm. |
| | 392 | GrossoLocatelliPullanMc(const GR& graph, int seed) : |
| | 393 | _graph(graph), _id(_graph), _rnd(seed) |
| | 394 | {} |
| | 395 | |
| | 396 | /// \brief Constructor with random number generator. |
| | 397 | /// |
| | 398 | /// Constructor with random number generator. |
| | 399 | /// |
| | 400 | /// \param graph The undirected graph the algorithm runs on. |
| | 401 | /// \param random A random number generator that is used during the |
| | 402 | /// algorithm. |
| | 403 | GrossoLocatelliPullanMc(const GR& graph, const Random& random) : |
| | 404 | _graph(graph), _id(_graph), _rnd(random) |
| | 405 | {} |
| | 406 | |
| | 407 | /// \name Execution Control |
| | 408 | /// @{ |
| | 409 | |
| | 410 | /// \brief Runs the algorithm. |
| | 411 | /// |
| | 412 | /// This function runs the algorithm. |
| | 413 | /// |
| | 414 | /// \param step_num The maximum number of node selections (steps) |
| | 415 | /// during the search process. |
| | 416 | /// This parameter controls the running time and the success of the |
| | 417 | /// algorithm. For larger values, the algorithm runs slower but it more |
| | 418 | /// likely finds larger cliques. For smaller values, the algorithm is |
| | 419 | /// faster but probably gives worse results. |
| | 420 | /// \param rule The node selection rule. For more information, see |
| | 421 | /// \ref SelectionRule. |
| | 422 | /// |
| | 423 | /// \return The size of the found clique. |
| | 424 | int run(int step_num = 100000, |
| | 425 | SelectionRule rule = PENALTY_BASED) |
| | 426 | { |
| | 427 | init(); |
| | 428 | switch (rule) { |
| | 429 | case RANDOM: |
| | 430 | return start<RandomSelectionRule>(step_num); |
| | 431 | case DEGREE_BASED: |
| | 432 | return start<DegreeBasedSelectionRule>(step_num); |
| | 433 | case PENALTY_BASED: |
| | 434 | return start<PenaltyBasedSelectionRule>(step_num); |
| | 435 | } |
| | 436 | return 0; // avoid warning |
| | 437 | } |
| | 438 | |
| | 439 | /// @} |
| | 440 | |
| | 441 | /// \name Query Functions |
| | 442 | /// @{ |
| | 443 | |
| | 444 | /// \brief The size of the found clique |
| | 445 | /// |
| | 446 | /// This function returns the size of the found clique. |
| | 447 | /// |
| | 448 | /// \pre run() must be called before using this function. |
| | 449 | int cliqueSize() const { |
| | 450 | return _best_size; |
| | 451 | } |
| | 452 | |
| | 453 | /// \brief Gives back the found clique in a \c bool node map |
| | 454 | /// |
| | 455 | /// This function gives back the characteristic vector of the found |
| | 456 | /// clique in the given node map. |
| | 457 | /// It must be a \ref concepts::WriteMap "writable" node map with |
| | 458 | /// \c bool (or convertible) value type. |
| | 459 | /// |
| | 460 | /// \pre run() must be called before using this function. |
| | 461 | template <typename CliqueMap> |
| | 462 | void cliqueMap(CliqueMap &map) const { |
| | 463 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 464 | map[n] = static_cast<bool>(_best_clique[_id[n]]); |
| | 465 | } |
| | 466 | } |
| | 467 | |
| | 468 | /// \brief Iterator to list the nodes of the found clique |
| | 469 | /// |
| | 470 | /// This iterator class lists the nodes of the found clique. |
| | 471 | /// Before using it, you must allocate a GrossoLocatelliPullanMc instance |
| | 472 | /// and call its \ref GrossoLocatelliPullanMc::run() "run()" method. |
| | 473 | /// |
| | 474 | /// The following example prints out the IDs of the nodes in the found |
| | 475 | /// clique. |
| | 476 | /// \code |
| | 477 | /// GrossoLocatelliPullanMc<Graph> mc(g); |
| | 478 | /// mc.run(); |
| | 479 | /// for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc); |
| | 480 | /// n != INVALID; ++n) |
| | 481 | /// { |
| | 482 | /// std::cout << g.id(n) << std::endl; |
| | 483 | /// } |
| | 484 | /// \endcode |
| | 485 | class CliqueNodeIt |
| | 486 | { |
| | 487 | private: |
| | 488 | NodeIt _it; |
| | 489 | BoolNodeMap _map; |
| | 490 | |
| | 491 | public: |
| | 492 | |
| | 493 | /// Constructor |
| | 494 | |
| | 495 | /// Constructor. |
| | 496 | /// \param mc The algorithm instance. |
| | 497 | CliqueNodeIt(const GrossoLocatelliPullanMc &mc) |
| | 498 | : _map(mc._graph) |
| | 499 | { |
| | 500 | mc.cliqueMap(_map); |
| | 501 | for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ; |
| | 502 | } |
| | 503 | |
| | 504 | /// Conversion to \c Node |
| | 505 | operator Node() const { return _it; } |
| | 506 | |
| | 507 | bool operator==(Invalid) const { return _it == INVALID; } |
| | 508 | bool operator!=(Invalid) const { return _it != INVALID; } |
| | 509 | |
| | 510 | /// Next node |
| | 511 | CliqueNodeIt &operator++() { |
| | 512 | for (++_it; _it != INVALID && !_map[_it]; ++_it) ; |
| | 513 | return *this; |
| | 514 | } |
| | 515 | |
| | 516 | /// Postfix incrementation |
| | 517 | |
| | 518 | /// Postfix incrementation. |
| | 519 | /// |
| | 520 | /// \warning This incrementation returns a \c Node, not a |
| | 521 | /// \c CliqueNodeIt as one may expect. |
| | 522 | typename GR::Node operator++(int) { |
| | 523 | Node n=*this; |
| | 524 | ++(*this); |
| | 525 | return n; |
| | 526 | } |
| | 527 | |
| | 528 | }; |
| | 529 | |
| | 530 | /// @} |
| | 531 | |
| | 532 | private: |
| | 533 | |
| | 534 | // Adds a node to the current clique |
| | 535 | void addCliqueNode(int u) { |
| | 536 | if (_clique[u]) return; |
| | 537 | _clique[u] = true; |
| | 538 | _size++; |
| | 539 | BoolVector &row = _gr[u]; |
| | 540 | for (int i = 0; i != _n; i++) { |
| | 541 | if (!row[i]) _delta[i]++; |
| | 542 | } |
| | 543 | } |
| | 544 | |
| | 545 | // Removes a node from the current clique |
| | 546 | void delCliqueNode(int u) { |
| | 547 | if (!_clique[u]) return; |
| | 548 | _clique[u] = false; |
| | 549 | _size--; |
| | 550 | BoolVector &row = _gr[u]; |
| | 551 | for (int i = 0; i != _n; i++) { |
| | 552 | if (!row[i]) _delta[i]--; |
| | 553 | } |
| | 554 | } |
| | 555 | |
| | 556 | // Initialize data structures |
| | 557 | void init() { |
| | 558 | _n = countNodes(_graph); |
| | 559 | int ui = 0; |
| | 560 | for (NodeIt u(_graph); u != INVALID; ++u) { |
| | 561 | _id[u] = ui++; |
| | 562 | } |
| | 563 | _gr.clear(); |
| | 564 | _gr.resize(_n, BoolVector(_n, false)); |
| | 565 | ui = 0; |
| | 566 | for (NodeIt u(_graph); u != INVALID; ++u) { |
| | 567 | for (IncEdgeIt e(_graph, u); e != INVALID; ++e) { |
| | 568 | int vi = _id[_graph.runningNode(e)]; |
| | 569 | _gr[ui][vi] = true; |
| | 570 | _gr[vi][ui] = true; |
| | 571 | } |
| | 572 | ++ui; |
| | 573 | } |
| | 574 | |
| | 575 | _clique.clear(); |
| | 576 | _clique.resize(_n, false); |
| | 577 | _size = 0; |
| | 578 | _best_clique.clear(); |
| | 579 | _best_clique.resize(_n, false); |
| | 580 | _best_size = 0; |
| | 581 | _delta.clear(); |
| | 582 | _delta.resize(_n, 0); |
| | 583 | _tabu.clear(); |
| | 584 | _tabu.resize(_n, false); |
| | 585 | } |
| | 586 | |
| | 587 | // Executes the algorithm |
| | 588 | template <typename SelectionRuleImpl> |
| | 589 | int start(int max_select) { |
| | 590 | // Options for the restart rule |
| | 591 | const bool delta_based_restart = true; |
| | 592 | const int restart_delta_limit = 4; |
| | 593 | |
| | 594 | if (_n == 0) return 0; |
| | 595 | if (_n == 1) { |
| | 596 | _best_clique[0] = true; |
| | 597 | _best_size = 1; |
| | 598 | return _best_size; |
| | 599 | } |
| | 600 | |
| | 601 | // Iterated local search |
| | 602 | SelectionRuleImpl sel_method(*this); |
| | 603 | int select = 0; |
| | 604 | IntVector restart_nodes; |
| | 605 | |
| | 606 | while (select < max_select) { |
| | 607 | |
| | 608 | // Perturbation/restart |
| | 609 | if (delta_based_restart) { |
| | 610 | restart_nodes.clear(); |
| | 611 | for (int i = 0; i != _n; i++) { |
| | 612 | if (_delta[i] >= restart_delta_limit) |
| | 613 | restart_nodes.push_back(i); |
| | 614 | } |
| | 615 | } |
| | 616 | int rs_node = -1; |
| | 617 | if (restart_nodes.size() > 0) { |
| | 618 | rs_node = restart_nodes[_rnd[restart_nodes.size()]]; |
| | 619 | } else { |
| | 620 | rs_node = _rnd[_n]; |
| | 621 | } |
| | 622 | BoolVector &row = _gr[rs_node]; |
| | 623 | for (int i = 0; i != _n; i++) { |
| | 624 | if (_clique[i] && !row[i]) delCliqueNode(i); |
| | 625 | } |
| | 626 | addCliqueNode(rs_node); |
| | 627 | |
| | 628 | // Local search |
| | 629 | _tabu.clear(); |
| | 630 | _tabu.resize(_n, false); |
| | 631 | bool tabu_empty = true; |
| | 632 | int max_swap = _size; |
| | 633 | while (select < max_select) { |
| | 634 | select++; |
| | 635 | int u; |
| | 636 | if ((u = sel_method.nextFeasibleAddNode()) != -1) { |
| | 637 | // Feasible add move |
| | 638 | addCliqueNode(u); |
| | 639 | if (tabu_empty) max_swap = _size; |
| | 640 | } |
| | 641 | else if ((u = sel_method.nextFeasibleSwapNode()) != -1) { |
| | 642 | // Feasible swap move |
| | 643 | int v = -1; |
| | 644 | BoolVector &row = _gr[u]; |
| | 645 | for (int i = 0; i != _n; i++) { |
| | 646 | if (_clique[i] && !row[i]) { |
| | 647 | v = i; |
| | 648 | break; |
| | 649 | } |
| | 650 | } |
| | 651 | addCliqueNode(u); |
| | 652 | delCliqueNode(v); |
| | 653 | _tabu[v] = true; |
| | 654 | tabu_empty = false; |
| | 655 | if (--max_swap <= 0) break; |
| | 656 | } |
| | 657 | else if ((u = sel_method.nextAddNode()) != -1) { |
| | 658 | // Non-feasible add move |
| | 659 | addCliqueNode(u); |
| | 660 | } |
| | 661 | else break; |
| | 662 | } |
| | 663 | if (_size > _best_size) { |
| | 664 | _best_clique = _clique; |
| | 665 | _best_size = _size; |
| | 666 | if (_best_size == _n) return _best_size; |
| | 667 | } |
| | 668 | sel_method.update(); |
| | 669 | } |
| | 670 | |
| | 671 | return _best_size; |
| | 672 | } |
| | 673 | |
| | 674 | }; //class GrossoLocatelliPullanMc |
| | 675 | |
| | 676 | ///@} |
| | 677 | |
| | 678 | } //namespace lemon |
| | 679 | |
| | 680 | #endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |