| | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2008 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_MAX_MATCHING_H |
| | 20 | #define LEMON_MAX_MATCHING_H |
| | 21 | |
| | 22 | #include <vector> |
| | 23 | #include <queue> |
| | 24 | #include <set> |
| | 25 | #include <limits> |
| | 26 | |
| | 27 | #include <lemon/core.h> |
| | 28 | #include <lemon/unionfind.h> |
| | 29 | #include <lemon/bin_heap.h> |
| | 30 | #include <lemon/maps.h> |
| | 31 | |
| | 32 | ///\ingroup matching |
| | 33 | ///\file |
| | 34 | ///\brief Maximum matching algorithms in graph. |
| | 35 | |
| | 36 | namespace lemon { |
| | 37 | |
| | 38 | ///\ingroup matching |
| | 39 | /// |
| | 40 | ///\brief Edmonds' alternating forest maximum matching algorithm. |
| | 41 | /// |
| | 42 | ///This class provides Edmonds' alternating forest matching |
| | 43 | ///algorithm. The starting matching (if any) can be passed to the |
| | 44 | ///algorithm using some of init functions. |
| | 45 | /// |
| | 46 | ///The dual side of a matching is a map of the nodes to |
| | 47 | ///MaxMatching::DecompType, having values \c D, \c A and \c C |
| | 48 | ///showing the Gallai-Edmonds decomposition of the digraph. The nodes |
| | 49 | ///in \c D induce a digraph with factor-critical components, the nodes |
| | 50 | ///in \c A form the barrier, and the nodes in \c C induce a digraph |
| | 51 | ///having a perfect matching. This decomposition can be attained by |
| | 52 | ///calling \c decomposition() after running the algorithm. |
| | 53 | /// |
| | 54 | ///\param Digraph The graph type the algorithm runs on. |
| | 55 | template <typename Graph> |
| | 56 | class MaxMatching { |
| | 57 | |
| | 58 | protected: |
| | 59 | |
| | 60 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| | 61 | |
| | 62 | typedef typename Graph::template NodeMap<int> UFECrossRef; |
| | 63 | typedef UnionFindEnum<UFECrossRef> UFE; |
| | 64 | typedef std::vector<Node> NV; |
| | 65 | |
| | 66 | typedef typename Graph::template NodeMap<int> EFECrossRef; |
| | 67 | typedef ExtendFindEnum<EFECrossRef> EFE; |
| | 68 | |
| | 69 | public: |
| | 70 | |
| | 71 | ///\brief Indicates the Gallai-Edmonds decomposition of the digraph. |
| | 72 | /// |
| | 73 | ///Indicates the Gallai-Edmonds decomposition of the digraph, which |
| | 74 | ///shows an upper bound on the size of a maximum matching. The |
| | 75 | ///nodes with DecompType \c D induce a digraph with factor-critical |
| | 76 | ///components, the nodes in \c A form the canonical barrier, and the |
| | 77 | ///nodes in \c C induce a digraph having a perfect matching. |
| | 78 | enum DecompType { |
| | 79 | D=0, |
| | 80 | A=1, |
| | 81 | C=2 |
| | 82 | }; |
| | 83 | |
| | 84 | protected: |
| | 85 | |
| | 86 | static const int HEUR_density=2; |
| | 87 | const Graph& g; |
| | 88 | typename Graph::template NodeMap<Node> _mate; |
| | 89 | typename Graph::template NodeMap<DecompType> position; |
| | 90 | |
| | 91 | public: |
| | 92 | |
| | 93 | MaxMatching(const Graph& _g) |
| | 94 | : g(_g), _mate(_g), position(_g) {} |
| | 95 | |
| | 96 | ///\brief Sets the actual matching to the empty matching. |
| | 97 | /// |
| | 98 | ///Sets the actual matching to the empty matching. |
| | 99 | /// |
| | 100 | void init() { |
| | 101 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 102 | _mate.set(v,INVALID); |
| | 103 | position.set(v,C); |
| | 104 | } |
| | 105 | } |
| | 106 | |
| | 107 | ///\brief Finds a greedy matching for initial matching. |
| | 108 | /// |
| | 109 | ///For initial matchig it finds a maximal greedy matching. |
| | 110 | void greedyInit() { |
| | 111 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 112 | _mate.set(v,INVALID); |
| | 113 | position.set(v,C); |
| | 114 | } |
| | 115 | for(NodeIt v(g); v!=INVALID; ++v) |
| | 116 | if ( _mate[v]==INVALID ) { |
| | 117 | for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) { |
| | 118 | Node y=g.runningNode(e); |
| | 119 | if ( _mate[y]==INVALID && y!=v ) { |
| | 120 | _mate.set(v,y); |
| | 121 | _mate.set(y,v); |
| | 122 | break; |
| | 123 | } |
| | 124 | } |
| | 125 | } |
| | 126 | } |
| | 127 | |
| | 128 | ///\brief Initialize the matching from each nodes' mate. |
| | 129 | /// |
| | 130 | ///Initialize the matching from a \c Node valued \c Node map. This |
| | 131 | ///map must be \e symmetric, i.e. if \c map[u]==v then \c |
| | 132 | ///map[v]==u must hold, and \c uv will be an arc of the initial |
| | 133 | ///matching. |
| | 134 | template <typename MateMap> |
| | 135 | void mateMapInit(MateMap& map) { |
| | 136 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 137 | _mate.set(v,map[v]); |
| | 138 | position.set(v,C); |
| | 139 | } |
| | 140 | } |
| | 141 | |
| | 142 | ///\brief Initialize the matching from a node map with the |
| | 143 | ///incident matching arcs. |
| | 144 | /// |
| | 145 | ///Initialize the matching from an \c Edge valued \c Node map. \c |
| | 146 | ///map[v] must be an \c Edge incident to \c v. This map must have |
| | 147 | ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c |
| | 148 | ///g.oppositeNode(v,map[v])==u holds, and now some arc joining \c |
| | 149 | ///u to \c v will be an arc of the matching. |
| | 150 | template<typename MatchingMap> |
| | 151 | void matchingMapInit(MatchingMap& map) { |
| | 152 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 153 | position.set(v,C); |
| | 154 | Edge e=map[v]; |
| | 155 | if ( e!=INVALID ) |
| | 156 | _mate.set(v,g.oppositeNode(v,e)); |
| | 157 | else |
| | 158 | _mate.set(v,INVALID); |
| | 159 | } |
| | 160 | } |
| | 161 | |
| | 162 | ///\brief Initialize the matching from the map containing the |
| | 163 | ///undirected matching arcs. |
| | 164 | /// |
| | 165 | ///Initialize the matching from a \c bool valued \c Edge map. This |
| | 166 | ///map must have the property that there are no two incident arcs |
| | 167 | ///\c e, \c f with \c map[e]==map[f]==true. The arcs \c e with \c |
| | 168 | ///map[e]==true form the matching. |
| | 169 | template <typename MatchingMap> |
| | 170 | void matchingInit(MatchingMap& map) { |
| | 171 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 172 | _mate.set(v,INVALID); |
| | 173 | position.set(v,C); |
| | 174 | } |
| | 175 | for(EdgeIt e(g); e!=INVALID; ++e) { |
| | 176 | if ( map[e] ) { |
| | 177 | Node u=g.u(e); |
| | 178 | Node v=g.v(e); |
| | 179 | _mate.set(u,v); |
| | 180 | _mate.set(v,u); |
| | 181 | } |
| | 182 | } |
| | 183 | } |
| | 184 | |
| | 185 | |
| | 186 | ///\brief Runs Edmonds' algorithm. |
| | 187 | /// |
| | 188 | ///Runs Edmonds' algorithm for sparse digraphs (number of arcs < |
| | 189 | ///2*number of nodes), and a heuristical Edmonds' algorithm with a |
| | 190 | ///heuristic of postponing shrinks for dense digraphs. |
| | 191 | void run() { |
| | 192 | if (countEdges(g) < HEUR_density * countNodes(g)) { |
| | 193 | greedyInit(); |
| | 194 | startSparse(); |
| | 195 | } else { |
| | 196 | init(); |
| | 197 | startDense(); |
| | 198 | } |
| | 199 | } |
| | 200 | |
| | 201 | |
| | 202 | ///\brief Starts Edmonds' algorithm. |
| | 203 | /// |
| | 204 | ///If runs the original Edmonds' algorithm. |
| | 205 | void startSparse() { |
| | 206 | |
| | 207 | typename Graph::template NodeMap<Node> ear(g,INVALID); |
| | 208 | //undefined for the base nodes of the blossoms (i.e. for the |
| | 209 | //representative elements of UFE blossom) and for the nodes in C |
| | 210 | |
| | 211 | UFECrossRef blossom_base(g); |
| | 212 | UFE blossom(blossom_base); |
| | 213 | NV rep(countNodes(g)); |
| | 214 | |
| | 215 | EFECrossRef tree_base(g); |
| | 216 | EFE tree(tree_base); |
| | 217 | |
| | 218 | //If these UFE's would be members of the class then also |
| | 219 | //blossom_base and tree_base should be a member. |
| | 220 | |
| | 221 | //We build only one tree and the other vertices uncovered by the |
| | 222 | //matching belong to C. (They can be considered as singleton |
| | 223 | //trees.) If this tree can be augmented or no more |
| | 224 | //grow/augmentation/shrink is possible then we return to this |
| | 225 | //"for" cycle. |
| | 226 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 227 | if (position[v]==C && _mate[v]==INVALID) { |
| | 228 | rep[blossom.insert(v)] = v; |
| | 229 | tree.insert(v); |
| | 230 | position.set(v,D); |
| | 231 | normShrink(v, ear, blossom, rep, tree); |
| | 232 | } |
| | 233 | } |
| | 234 | } |
| | 235 | |
| | 236 | ///\brief Starts Edmonds' algorithm. |
| | 237 | /// |
| | 238 | ///It runs Edmonds' algorithm with a heuristic of postponing |
| | 239 | ///shrinks, giving a faster algorithm for dense digraphs. |
| | 240 | void startDense() { |
| | 241 | |
| | 242 | typename Graph::template NodeMap<Node> ear(g,INVALID); |
| | 243 | //undefined for the base nodes of the blossoms (i.e. for the |
| | 244 | //representative elements of UFE blossom) and for the nodes in C |
| | 245 | |
| | 246 | UFECrossRef blossom_base(g); |
| | 247 | UFE blossom(blossom_base); |
| | 248 | NV rep(countNodes(g)); |
| | 249 | |
| | 250 | EFECrossRef tree_base(g); |
| | 251 | EFE tree(tree_base); |
| | 252 | |
| | 253 | //If these UFE's would be members of the class then also |
| | 254 | //blossom_base and tree_base should be a member. |
| | 255 | |
| | 256 | //We build only one tree and the other vertices uncovered by the |
| | 257 | //matching belong to C. (They can be considered as singleton |
| | 258 | //trees.) If this tree can be augmented or no more |
| | 259 | //grow/augmentation/shrink is possible then we return to this |
| | 260 | //"for" cycle. |
| | 261 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 262 | if ( position[v]==C && _mate[v]==INVALID ) { |
| | 263 | rep[blossom.insert(v)] = v; |
| | 264 | tree.insert(v); |
| | 265 | position.set(v,D); |
| | 266 | lateShrink(v, ear, blossom, rep, tree); |
| | 267 | } |
| | 268 | } |
| | 269 | } |
| | 270 | |
| | 271 | |
| | 272 | |
| | 273 | ///\brief Returns the size of the actual matching stored. |
| | 274 | /// |
| | 275 | ///Returns the size of the actual matching stored. After \ref |
| | 276 | ///run() it returns the size of a maximum matching in the digraph. |
| | 277 | int size() const { |
| | 278 | int s=0; |
| | 279 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 280 | if ( _mate[v]!=INVALID ) { |
| | 281 | ++s; |
| | 282 | } |
| | 283 | } |
| | 284 | return s/2; |
| | 285 | } |
| | 286 | |
| | 287 | |
| | 288 | ///\brief Returns the mate of a node in the actual matching. |
| | 289 | /// |
| | 290 | ///Returns the mate of a \c node in the actual matching. |
| | 291 | ///Returns INVALID if the \c node is not covered by the actual matching. |
| | 292 | Node mate(const Node& node) const { |
| | 293 | return _mate[node]; |
| | 294 | } |
| | 295 | |
| | 296 | ///\brief Returns the matching arc incident to the given node. |
| | 297 | /// |
| | 298 | ///Returns the matching arc of a \c node in the actual matching. |
| | 299 | ///Returns INVALID if the \c node is not covered by the actual matching. |
| | 300 | Edge matchingArc(const Node& node) const { |
| | 301 | if (_mate[node] == INVALID) return INVALID; |
| | 302 | Node n = node < _mate[node] ? node : _mate[node]; |
| | 303 | for (IncEdgeIt e(g, n); e != INVALID; ++e) { |
| | 304 | if (g.oppositeNode(n, e) == _mate[n]) { |
| | 305 | return e; |
| | 306 | } |
| | 307 | } |
| | 308 | return INVALID; |
| | 309 | } |
| | 310 | |
| | 311 | /// \brief Returns the class of the node in the Edmonds-Gallai |
| | 312 | /// decomposition. |
| | 313 | /// |
| | 314 | /// Returns the class of the node in the Edmonds-Gallai |
| | 315 | /// decomposition. |
| | 316 | DecompType decomposition(const Node& n) { |
| | 317 | return position[n] == A; |
| | 318 | } |
| | 319 | |
| | 320 | /// \brief Returns true when the node is in the barrier. |
| | 321 | /// |
| | 322 | /// Returns true when the node is in the barrier. |
| | 323 | bool barrier(const Node& n) { |
| | 324 | return position[n] == A; |
| | 325 | } |
| | 326 | |
| | 327 | ///\brief Gives back the matching in a \c Node of mates. |
| | 328 | /// |
| | 329 | ///Writes the stored matching to a \c Node valued \c Node map. The |
| | 330 | ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c |
| | 331 | ///map[v]==u will hold, and now \c uv is an arc of the matching. |
| | 332 | template <typename MateMap> |
| | 333 | void mateMap(MateMap& map) const { |
| | 334 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 335 | map.set(v,_mate[v]); |
| | 336 | } |
| | 337 | } |
| | 338 | |
| | 339 | ///\brief Gives back the matching in an \c Edge valued \c Node |
| | 340 | ///map. |
| | 341 | /// |
| | 342 | ///Writes the stored matching to an \c Edge valued \c Node |
| | 343 | ///map. \c map[v] will be an \c Edge incident to \c v. This |
| | 344 | ///map will have the property that if \c g.oppositeNode(u,map[u]) |
| | 345 | ///== v then \c map[u]==map[v] holds, and now this arc is an arc |
| | 346 | ///of the matching. |
| | 347 | template <typename MatchingMap> |
| | 348 | void matchingMap(MatchingMap& map) const { |
| | 349 | typename Graph::template NodeMap<bool> todo(g,true); |
| | 350 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 351 | if (_mate[v]!=INVALID && v < _mate[v]) { |
| | 352 | Node u=_mate[v]; |
| | 353 | for(IncEdgeIt e(g,v); e!=INVALID; ++e) { |
| | 354 | if ( g.runningNode(e) == u ) { |
| | 355 | map.set(u,e); |
| | 356 | map.set(v,e); |
| | 357 | todo.set(u,false); |
| | 358 | todo.set(v,false); |
| | 359 | break; |
| | 360 | } |
| | 361 | } |
| | 362 | } |
| | 363 | } |
| | 364 | } |
| | 365 | |
| | 366 | |
| | 367 | ///\brief Gives back the matching in a \c bool valued \c Edge |
| | 368 | ///map. |
| | 369 | /// |
| | 370 | ///Writes the matching stored to a \c bool valued \c Arc |
| | 371 | ///map. This map will have the property that there are no two |
| | 372 | ///incident arcs \c e, \c f with \c map[e]==map[f]==true. The |
| | 373 | ///arcs \c e with \c map[e]==true form the matching. |
| | 374 | template<typename MatchingMap> |
| | 375 | void matching(MatchingMap& map) const { |
| | 376 | for(EdgeIt e(g); e!=INVALID; ++e) map.set(e,false); |
| | 377 | |
| | 378 | typename Graph::template NodeMap<bool> todo(g,true); |
| | 379 | for(NodeIt v(g); v!=INVALID; ++v) { |
| | 380 | if ( todo[v] && _mate[v]!=INVALID ) { |
| | 381 | Node u=_mate[v]; |
| | 382 | for(IncEdgeIt e(g,v); e!=INVALID; ++e) { |
| | 383 | if ( g.runningNode(e) == u ) { |
| | 384 | map.set(e,true); |
| | 385 | todo.set(u,false); |
| | 386 | todo.set(v,false); |
| | 387 | break; |
| | 388 | } |
| | 389 | } |
| | 390 | } |
| | 391 | } |
| | 392 | } |
| | 393 | |
| | 394 | |
| | 395 | ///\brief Returns the canonical decomposition of the digraph after running |
| | 396 | ///the algorithm. |
| | 397 | /// |
| | 398 | ///After calling any run methods of the class, it writes the |
| | 399 | ///Gallai-Edmonds canonical decomposition of the digraph. \c map |
| | 400 | ///must be a node map of \ref DecompType 's. |
| | 401 | template <typename DecompositionMap> |
| | 402 | void decomposition(DecompositionMap& map) const { |
| | 403 | for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]); |
| | 404 | } |
| | 405 | |
| | 406 | ///\brief Returns a barrier on the nodes. |
| | 407 | /// |
| | 408 | ///After calling any run methods of the class, it writes a |
| | 409 | ///canonical barrier on the nodes. The odd component number of the |
| | 410 | ///remaining digraph minus the barrier size is a lower bound for the |
| | 411 | ///uncovered nodes in the digraph. The \c map must be a node map of |
| | 412 | ///bools. |
| | 413 | template <typename BarrierMap> |
| | 414 | void barrier(BarrierMap& barrier) { |
| | 415 | for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A); |
| | 416 | } |
| | 417 | |
| | 418 | private: |
| | 419 | |
| | 420 | |
| | 421 | void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear, |
| | 422 | UFE& blossom, NV& rep, EFE& tree) { |
| | 423 | //We have one tree which we grow, and also shrink but only if it |
| | 424 | //cannot be postponed. If we augment then we return to the "for" |
| | 425 | //cycle of runEdmonds(). |
| | 426 | |
| | 427 | std::queue<Node> Q; //queue of the totally unscanned nodes |
| | 428 | Q.push(v); |
| | 429 | std::queue<Node> R; |
| | 430 | //queue of the nodes which must be scanned for a possible shrink |
| | 431 | |
| | 432 | while ( !Q.empty() ) { |
| | 433 | Node x=Q.front(); |
| | 434 | Q.pop(); |
| | 435 | for( IncEdgeIt e(g,x); e!= INVALID; ++e ) { |
| | 436 | Node y=g.runningNode(e); |
| | 437 | //growOrAugment grows if y is covered by the matching and |
| | 438 | //augments if not. In this latter case it returns 1. |
| | 439 | if (position[y]==C && |
| | 440 | growOrAugment(y, x, ear, blossom, rep, tree, Q)) return; |
| | 441 | } |
| | 442 | R.push(x); |
| | 443 | } |
| | 444 | |
| | 445 | while ( !R.empty() ) { |
| | 446 | Node x=R.front(); |
| | 447 | R.pop(); |
| | 448 | |
| | 449 | for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) { |
| | 450 | Node y=g.runningNode(e); |
| | 451 | |
| | 452 | if ( position[y] == D && blossom.find(x) != blossom.find(y) ) |
| | 453 | //Recall that we have only one tree. |
| | 454 | shrink( x, y, ear, blossom, rep, tree, Q); |
| | 455 | |
| | 456 | while ( !Q.empty() ) { |
| | 457 | Node z=Q.front(); |
| | 458 | Q.pop(); |
| | 459 | for( IncEdgeIt f(g,z); f!= INVALID; ++f ) { |
| | 460 | Node w=g.runningNode(f); |
| | 461 | //growOrAugment grows if y is covered by the matching and |
| | 462 | //augments if not. In this latter case it returns 1. |
| | 463 | if (position[w]==C && |
| | 464 | growOrAugment(w, z, ear, blossom, rep, tree, Q)) return; |
| | 465 | } |
| | 466 | R.push(z); |
| | 467 | } |
| | 468 | } //for e |
| | 469 | } // while ( !R.empty() ) |
| | 470 | } |
| | 471 | |
| | 472 | void normShrink(Node v, typename Graph::template NodeMap<Node>& ear, |
| | 473 | UFE& blossom, NV& rep, EFE& tree) { |
| | 474 | //We have one tree, which we grow and shrink. If we augment then we |
| | 475 | //return to the "for" cycle of runEdmonds(). |
| | 476 | |
| | 477 | std::queue<Node> Q; //queue of the unscanned nodes |
| | 478 | Q.push(v); |
| | 479 | while ( !Q.empty() ) { |
| | 480 | |
| | 481 | Node x=Q.front(); |
| | 482 | Q.pop(); |
| | 483 | |
| | 484 | for( IncEdgeIt e(g,x); e!=INVALID; ++e ) { |
| | 485 | Node y=g.runningNode(e); |
| | 486 | |
| | 487 | switch ( position[y] ) { |
| | 488 | case D: //x and y must be in the same tree |
| | 489 | if ( blossom.find(x) != blossom.find(y)) |
| | 490 | //x and y are in the same tree |
| | 491 | shrink(x, y, ear, blossom, rep, tree, Q); |
| | 492 | break; |
| | 493 | case C: |
| | 494 | //growOrAugment grows if y is covered by the matching and |
| | 495 | //augments if not. In this latter case it returns 1. |
| | 496 | if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return; |
| | 497 | break; |
| | 498 | default: break; |
| | 499 | } |
| | 500 | } |
| | 501 | } |
| | 502 | } |
| | 503 | |
| | 504 | void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear, |
| | 505 | UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) { |
| | 506 | //x and y are the two adjacent vertices in two blossoms. |
| | 507 | |
| | 508 | typename Graph::template NodeMap<bool> path(g,false); |
| | 509 | |
| | 510 | Node b=rep[blossom.find(x)]; |
| | 511 | path.set(b,true); |
| | 512 | b=_mate[b]; |
| | 513 | while ( b!=INVALID ) { |
| | 514 | b=rep[blossom.find(ear[b])]; |
| | 515 | path.set(b,true); |
| | 516 | b=_mate[b]; |
| | 517 | } //we go until the root through bases of blossoms and odd vertices |
| | 518 | |
| | 519 | Node top=y; |
| | 520 | Node middle=rep[blossom.find(top)]; |
| | 521 | Node bottom=x; |
| | 522 | while ( !path[middle] ) |
| | 523 | shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q); |
| | 524 | //Until we arrive to a node on the path, we update blossom, tree |
| | 525 | //and the positions of the odd nodes. |
| | 526 | |
| | 527 | Node base=middle; |
| | 528 | top=x; |
| | 529 | middle=rep[blossom.find(top)]; |
| | 530 | bottom=y; |
| | 531 | Node blossom_base=rep[blossom.find(base)]; |
| | 532 | while ( middle!=blossom_base ) |
| | 533 | shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q); |
| | 534 | //Until we arrive to a node on the path, we update blossom, tree |
| | 535 | //and the positions of the odd nodes. |
| | 536 | |
| | 537 | rep[blossom.find(base)] = base; |
| | 538 | } |
| | 539 | |
| | 540 | void shrinkStep(Node& top, Node& middle, Node& bottom, |
| | 541 | typename Graph::template NodeMap<Node>& ear, |
| | 542 | UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) { |
| | 543 | //We traverse a blossom and update everything. |
| | 544 | |
| | 545 | ear.set(top,bottom); |
| | 546 | Node t=top; |
| | 547 | while ( t!=middle ) { |
| | 548 | Node u=_mate[t]; |
| | 549 | t=ear[u]; |
| | 550 | ear.set(t,u); |
| | 551 | } |
| | 552 | bottom=_mate[middle]; |
| | 553 | position.set(bottom,D); |
| | 554 | Q.push(bottom); |
| | 555 | top=ear[bottom]; |
| | 556 | Node oldmiddle=middle; |
| | 557 | middle=rep[blossom.find(top)]; |
| | 558 | tree.erase(bottom); |
| | 559 | tree.erase(oldmiddle); |
| | 560 | blossom.insert(bottom); |
| | 561 | blossom.join(bottom, oldmiddle); |
| | 562 | blossom.join(top, oldmiddle); |
| | 563 | } |
| | 564 | |
| | 565 | |
| | 566 | |
| | 567 | bool growOrAugment(Node& y, Node& x, typename Graph::template |
| | 568 | NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree, |
| | 569 | std::queue<Node>& Q) { |
| | 570 | //x is in a blossom in the tree, y is outside. If y is covered by |
| | 571 | //the matching we grow, otherwise we augment. In this case we |
| | 572 | //return 1. |
| | 573 | |
| | 574 | if ( _mate[y]!=INVALID ) { //grow |
| | 575 | ear.set(y,x); |
| | 576 | Node w=_mate[y]; |
| | 577 | rep[blossom.insert(w)] = w; |
| | 578 | position.set(y,A); |
| | 579 | position.set(w,D); |
| | 580 | int t = tree.find(rep[blossom.find(x)]); |
| | 581 | tree.insert(y,t); |
| | 582 | tree.insert(w,t); |
| | 583 | Q.push(w); |
| | 584 | } else { //augment |
| | 585 | augment(x, ear, blossom, rep, tree); |
| | 586 | _mate.set(x,y); |
| | 587 | _mate.set(y,x); |
| | 588 | return true; |
| | 589 | } |
| | 590 | return false; |
| | 591 | } |
| | 592 | |
| | 593 | void augment(Node x, typename Graph::template NodeMap<Node>& ear, |
| | 594 | UFE& blossom, NV& rep, EFE& tree) { |
| | 595 | Node v=_mate[x]; |
| | 596 | while ( v!=INVALID ) { |
| | 597 | |
| | 598 | Node u=ear[v]; |
| | 599 | _mate.set(v,u); |
| | 600 | Node tmp=v; |
| | 601 | v=_mate[u]; |
| | 602 | _mate.set(u,tmp); |
| | 603 | } |
| | 604 | int y = tree.find(rep[blossom.find(x)]); |
| | 605 | for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) { |
| | 606 | if ( position[tit] == D ) { |
| | 607 | int b = blossom.find(tit); |
| | 608 | for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) { |
| | 609 | position.set(bit, C); |
| | 610 | } |
| | 611 | blossom.eraseClass(b); |
| | 612 | } else position.set(tit, C); |
| | 613 | } |
| | 614 | tree.eraseClass(y); |
| | 615 | |
| | 616 | } |
| | 617 | |
| | 618 | }; |
| | 619 | |
| | 620 | /// \ingroup matching |
| | 621 | /// |
| | 622 | /// \brief Weighted matching in general graphs |
| | 623 | /// |
| | 624 | /// This class provides an efficient implementation of Edmond's |
| | 625 | /// maximum weighted matching algorithm. The implementation is based |
| | 626 | /// on extensive use of priority queues and provides |
| | 627 | /// \f$O(nm\log(n))\f$ time complexity. |
| | 628 | /// |
| | 629 | /// The maximum weighted matching problem is to find undirected |
| | 630 | /// arcs in the digraph with maximum overall weight and no two of |
| | 631 | /// them shares their endpoints. The problem can be formulated with |
| | 632 | /// the next linear program: |
| | 633 | /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
| | 634 | ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] |
| | 635 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
| | 636 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| | 637 | /// where \f$\delta(X)\f$ is the set of arcs incident to a node in |
| | 638 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in |
| | 639 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of |
| | 640 | /// the nodes. |
| | 641 | /// |
| | 642 | /// The algorithm calculates an optimal matching and a proof of the |
| | 643 | /// optimality. The solution of the dual problem can be used to check |
| | 644 | /// the result of the algorithm. The dual linear problem is the next: |
| | 645 | /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f] |
| | 646 | /// \f[y_u \ge 0 \quad \forall u \in V\f] |
| | 647 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
| | 648 | /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f] |
| | 649 | /// |
| | 650 | /// The algorithm can be executed with \c run() or the \c init() and |
| | 651 | /// then the \c start() member functions. After it the matching can |
| | 652 | /// be asked with \c matching() or mate() functions. The dual |
| | 653 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
| | 654 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
| | 655 | /// "BlossomIt" nested class which is able to iterate on the nodes |
| | 656 | /// of a blossom. If the value type is integral then the dual |
| | 657 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
| | 658 | template <typename _Graph, |
| | 659 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
| | 660 | class MaxWeightedMatching { |
| | 661 | public: |
| | 662 | |
| | 663 | typedef _Graph Graph; |
| | 664 | typedef _WeightMap WeightMap; |
| | 665 | typedef typename WeightMap::Value Value; |
| | 666 | |
| | 667 | /// \brief Scaling factor for dual solution |
| | 668 | /// |
| | 669 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
| | 670 | /// according to the value type. |
| | 671 | static const int dualScale = |
| | 672 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| | 673 | |
| | 674 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
| | 675 | MatchingMap; |
| | 676 | |
| | 677 | private: |
| | 678 | |
| | 679 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| | 680 | |
| | 681 | typedef typename Graph::template NodeMap<Value> NodePotential; |
| | 682 | typedef std::vector<Node> BlossomNodeList; |
| | 683 | |
| | 684 | struct BlossomVariable { |
| | 685 | int begin, end; |
| | 686 | Value value; |
| | 687 | |
| | 688 | BlossomVariable(int _begin, int _end, Value _value) |
| | 689 | : begin(_begin), end(_end), value(_value) {} |
| | 690 | |
| | 691 | }; |
| | 692 | |
| | 693 | typedef std::vector<BlossomVariable> BlossomPotential; |
| | 694 | |
| | 695 | const Graph& _graph; |
| | 696 | const WeightMap& _weight; |
| | 697 | |
| | 698 | MatchingMap* _matching; |
| | 699 | |
| | 700 | NodePotential* _node_potential; |
| | 701 | |
| | 702 | BlossomPotential _blossom_potential; |
| | 703 | BlossomNodeList _blossom_node_list; |
| | 704 | |
| | 705 | int _node_num; |
| | 706 | int _blossom_num; |
| | 707 | |
| | 708 | typedef typename Graph::template NodeMap<int> NodeIntMap; |
| | 709 | typedef typename Graph::template ArcMap<int> ArcIntMap; |
| | 710 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
| | 711 | typedef RangeMap<int> IntIntMap; |
| | 712 | |
| | 713 | enum Status { |
| | 714 | EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
| | 715 | }; |
| | 716 | |
| | 717 | typedef HeapUnionFind<Value, NodeIntMap> BlossomSet; |
| | 718 | struct BlossomData { |
| | 719 | int tree; |
| | 720 | Status status; |
| | 721 | Arc pred, next; |
| | 722 | Value pot, offset; |
| | 723 | Node base; |
| | 724 | }; |
| | 725 | |
| | 726 | NodeIntMap *_blossom_index; |
| | 727 | BlossomSet *_blossom_set; |
| | 728 | RangeMap<BlossomData>* _blossom_data; |
| | 729 | |
| | 730 | NodeIntMap *_node_index; |
| | 731 | ArcIntMap *_node_heap_index; |
| | 732 | |
| | 733 | struct NodeData { |
| | 734 | |
| | 735 | NodeData(ArcIntMap& node_heap_index) |
| | 736 | : heap(node_heap_index) {} |
| | 737 | |
| | 738 | int blossom; |
| | 739 | Value pot; |
| | 740 | BinHeap<Value, ArcIntMap> heap; |
| | 741 | std::map<int, Arc> heap_index; |
| | 742 | |
| | 743 | int tree; |
| | 744 | }; |
| | 745 | |
| | 746 | RangeMap<NodeData>* _node_data; |
| | 747 | |
| | 748 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
| | 749 | |
| | 750 | IntIntMap *_tree_set_index; |
| | 751 | TreeSet *_tree_set; |
| | 752 | |
| | 753 | NodeIntMap *_delta1_index; |
| | 754 | BinHeap<Value, NodeIntMap> *_delta1; |
| | 755 | |
| | 756 | IntIntMap *_delta2_index; |
| | 757 | BinHeap<Value, IntIntMap> *_delta2; |
| | 758 | |
| | 759 | EdgeIntMap *_delta3_index; |
| | 760 | BinHeap<Value, EdgeIntMap> *_delta3; |
| | 761 | |
| | 762 | IntIntMap *_delta4_index; |
| | 763 | BinHeap<Value, IntIntMap> *_delta4; |
| | 764 | |
| | 765 | Value _delta_sum; |
| | 766 | |
| | 767 | void createStructures() { |
| | 768 | _node_num = countNodes(_graph); |
| | 769 | _blossom_num = _node_num * 3 / 2; |
| | 770 | |
| | 771 | if (!_matching) { |
| | 772 | _matching = new MatchingMap(_graph); |
| | 773 | } |
| | 774 | if (!_node_potential) { |
| | 775 | _node_potential = new NodePotential(_graph); |
| | 776 | } |
| | 777 | if (!_blossom_set) { |
| | 778 | _blossom_index = new NodeIntMap(_graph); |
| | 779 | _blossom_set = new BlossomSet(*_blossom_index); |
| | 780 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| | 781 | } |
| | 782 | |
| | 783 | if (!_node_index) { |
| | 784 | _node_index = new NodeIntMap(_graph); |
| | 785 | _node_heap_index = new ArcIntMap(_graph); |
| | 786 | _node_data = new RangeMap<NodeData>(_node_num, |
| | 787 | NodeData(*_node_heap_index)); |
| | 788 | } |
| | 789 | |
| | 790 | if (!_tree_set) { |
| | 791 | _tree_set_index = new IntIntMap(_blossom_num); |
| | 792 | _tree_set = new TreeSet(*_tree_set_index); |
| | 793 | } |
| | 794 | if (!_delta1) { |
| | 795 | _delta1_index = new NodeIntMap(_graph); |
| | 796 | _delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index); |
| | 797 | } |
| | 798 | if (!_delta2) { |
| | 799 | _delta2_index = new IntIntMap(_blossom_num); |
| | 800 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| | 801 | } |
| | 802 | if (!_delta3) { |
| | 803 | _delta3_index = new EdgeIntMap(_graph); |
| | 804 | _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index); |
| | 805 | } |
| | 806 | if (!_delta4) { |
| | 807 | _delta4_index = new IntIntMap(_blossom_num); |
| | 808 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| | 809 | } |
| | 810 | } |
| | 811 | |
| | 812 | void destroyStructures() { |
| | 813 | _node_num = countNodes(_graph); |
| | 814 | _blossom_num = _node_num * 3 / 2; |
| | 815 | |
| | 816 | if (_matching) { |
| | 817 | delete _matching; |
| | 818 | } |
| | 819 | if (_node_potential) { |
| | 820 | delete _node_potential; |
| | 821 | } |
| | 822 | if (_blossom_set) { |
| | 823 | delete _blossom_index; |
| | 824 | delete _blossom_set; |
| | 825 | delete _blossom_data; |
| | 826 | } |
| | 827 | |
| | 828 | if (_node_index) { |
| | 829 | delete _node_index; |
| | 830 | delete _node_heap_index; |
| | 831 | delete _node_data; |
| | 832 | } |
| | 833 | |
| | 834 | if (_tree_set) { |
| | 835 | delete _tree_set_index; |
| | 836 | delete _tree_set; |
| | 837 | } |
| | 838 | if (_delta1) { |
| | 839 | delete _delta1_index; |
| | 840 | delete _delta1; |
| | 841 | } |
| | 842 | if (_delta2) { |
| | 843 | delete _delta2_index; |
| | 844 | delete _delta2; |
| | 845 | } |
| | 846 | if (_delta3) { |
| | 847 | delete _delta3_index; |
| | 848 | delete _delta3; |
| | 849 | } |
| | 850 | if (_delta4) { |
| | 851 | delete _delta4_index; |
| | 852 | delete _delta4; |
| | 853 | } |
| | 854 | } |
| | 855 | |
| | 856 | void matchedToEven(int blossom, int tree) { |
| | 857 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 858 | _delta2->erase(blossom); |
| | 859 | } |
| | 860 | |
| | 861 | if (!_blossom_set->trivial(blossom)) { |
| | 862 | (*_blossom_data)[blossom].pot -= |
| | 863 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| | 864 | } |
| | 865 | |
| | 866 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 867 | n != INVALID; ++n) { |
| | 868 | |
| | 869 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| | 870 | int ni = (*_node_index)[n]; |
| | 871 | |
| | 872 | (*_node_data)[ni].heap.clear(); |
| | 873 | (*_node_data)[ni].heap_index.clear(); |
| | 874 | |
| | 875 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| | 876 | |
| | 877 | _delta1->push(n, (*_node_data)[ni].pot); |
| | 878 | |
| | 879 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 880 | Node v = _graph.source(e); |
| | 881 | int vb = _blossom_set->find(v); |
| | 882 | int vi = (*_node_index)[v]; |
| | 883 | |
| | 884 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 885 | dualScale * _weight[e]; |
| | 886 | |
| | 887 | if ((*_blossom_data)[vb].status == EVEN) { |
| | 888 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| | 889 | _delta3->push(e, rw / 2); |
| | 890 | } |
| | 891 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| | 892 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
| | 893 | _delta3->push(e, rw); |
| | 894 | } |
| | 895 | } else { |
| | 896 | typename std::map<int, Arc>::iterator it = |
| | 897 | (*_node_data)[vi].heap_index.find(tree); |
| | 898 | |
| | 899 | if (it != (*_node_data)[vi].heap_index.end()) { |
| | 900 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| | 901 | (*_node_data)[vi].heap.replace(it->second, e); |
| | 902 | (*_node_data)[vi].heap.decrease(e, rw); |
| | 903 | it->second = e; |
| | 904 | } |
| | 905 | } else { |
| | 906 | (*_node_data)[vi].heap.push(e, rw); |
| | 907 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| | 908 | } |
| | 909 | |
| | 910 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| | 911 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| | 912 | |
| | 913 | if ((*_blossom_data)[vb].status == MATCHED) { |
| | 914 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| | 915 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| | 916 | (*_blossom_data)[vb].offset); |
| | 917 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| | 918 | (*_blossom_data)[vb].offset){ |
| | 919 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| | 920 | (*_blossom_data)[vb].offset); |
| | 921 | } |
| | 922 | } |
| | 923 | } |
| | 924 | } |
| | 925 | } |
| | 926 | } |
| | 927 | (*_blossom_data)[blossom].offset = 0; |
| | 928 | } |
| | 929 | |
| | 930 | void matchedToOdd(int blossom) { |
| | 931 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 932 | _delta2->erase(blossom); |
| | 933 | } |
| | 934 | (*_blossom_data)[blossom].offset += _delta_sum; |
| | 935 | if (!_blossom_set->trivial(blossom)) { |
| | 936 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
| | 937 | (*_blossom_data)[blossom].offset); |
| | 938 | } |
| | 939 | } |
| | 940 | |
| | 941 | void evenToMatched(int blossom, int tree) { |
| | 942 | if (!_blossom_set->trivial(blossom)) { |
| | 943 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
| | 944 | } |
| | 945 | |
| | 946 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 947 | n != INVALID; ++n) { |
| | 948 | int ni = (*_node_index)[n]; |
| | 949 | (*_node_data)[ni].pot -= _delta_sum; |
| | 950 | |
| | 951 | _delta1->erase(n); |
| | 952 | |
| | 953 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 954 | Node v = _graph.source(e); |
| | 955 | int vb = _blossom_set->find(v); |
| | 956 | int vi = (*_node_index)[v]; |
| | 957 | |
| | 958 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 959 | dualScale * _weight[e]; |
| | 960 | |
| | 961 | if (vb == blossom) { |
| | 962 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 963 | _delta3->erase(e); |
| | 964 | } |
| | 965 | } else if ((*_blossom_data)[vb].status == EVEN) { |
| | 966 | |
| | 967 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 968 | _delta3->erase(e); |
| | 969 | } |
| | 970 | |
| | 971 | int vt = _tree_set->find(vb); |
| | 972 | |
| | 973 | if (vt != tree) { |
| | 974 | |
| | 975 | Arc r = _graph.oppositeArc(e); |
| | 976 | |
| | 977 | typename std::map<int, Arc>::iterator it = |
| | 978 | (*_node_data)[ni].heap_index.find(vt); |
| | 979 | |
| | 980 | if (it != (*_node_data)[ni].heap_index.end()) { |
| | 981 | if ((*_node_data)[ni].heap[it->second] > rw) { |
| | 982 | (*_node_data)[ni].heap.replace(it->second, r); |
| | 983 | (*_node_data)[ni].heap.decrease(r, rw); |
| | 984 | it->second = r; |
| | 985 | } |
| | 986 | } else { |
| | 987 | (*_node_data)[ni].heap.push(r, rw); |
| | 988 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| | 989 | } |
| | 990 | |
| | 991 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
| | 992 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| | 993 | |
| | 994 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
| | 995 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| | 996 | (*_blossom_data)[blossom].offset); |
| | 997 | } else if ((*_delta2)[blossom] > |
| | 998 | _blossom_set->classPrio(blossom) - |
| | 999 | (*_blossom_data)[blossom].offset){ |
| | 1000 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| | 1001 | (*_blossom_data)[blossom].offset); |
| | 1002 | } |
| | 1003 | } |
| | 1004 | } |
| | 1005 | |
| | 1006 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| | 1007 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 1008 | _delta3->erase(e); |
| | 1009 | } |
| | 1010 | } else { |
| | 1011 | |
| | 1012 | typename std::map<int, Arc>::iterator it = |
| | 1013 | (*_node_data)[vi].heap_index.find(tree); |
| | 1014 | |
| | 1015 | if (it != (*_node_data)[vi].heap_index.end()) { |
| | 1016 | (*_node_data)[vi].heap.erase(it->second); |
| | 1017 | (*_node_data)[vi].heap_index.erase(it); |
| | 1018 | if ((*_node_data)[vi].heap.empty()) { |
| | 1019 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
| | 1020 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
| | 1021 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
| | 1022 | } |
| | 1023 | |
| | 1024 | if ((*_blossom_data)[vb].status == MATCHED) { |
| | 1025 | if (_blossom_set->classPrio(vb) == |
| | 1026 | std::numeric_limits<Value>::max()) { |
| | 1027 | _delta2->erase(vb); |
| | 1028 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
| | 1029 | (*_blossom_data)[vb].offset) { |
| | 1030 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
| | 1031 | (*_blossom_data)[vb].offset); |
| | 1032 | } |
| | 1033 | } |
| | 1034 | } |
| | 1035 | } |
| | 1036 | } |
| | 1037 | } |
| | 1038 | } |
| | 1039 | |
| | 1040 | void oddToMatched(int blossom) { |
| | 1041 | (*_blossom_data)[blossom].offset -= _delta_sum; |
| | 1042 | |
| | 1043 | if (_blossom_set->classPrio(blossom) != |
| | 1044 | std::numeric_limits<Value>::max()) { |
| | 1045 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| | 1046 | (*_blossom_data)[blossom].offset); |
| | 1047 | } |
| | 1048 | |
| | 1049 | if (!_blossom_set->trivial(blossom)) { |
| | 1050 | _delta4->erase(blossom); |
| | 1051 | } |
| | 1052 | } |
| | 1053 | |
| | 1054 | void oddToEven(int blossom, int tree) { |
| | 1055 | if (!_blossom_set->trivial(blossom)) { |
| | 1056 | _delta4->erase(blossom); |
| | 1057 | (*_blossom_data)[blossom].pot -= |
| | 1058 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
| | 1059 | } |
| | 1060 | |
| | 1061 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 1062 | n != INVALID; ++n) { |
| | 1063 | int ni = (*_node_index)[n]; |
| | 1064 | |
| | 1065 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| | 1066 | |
| | 1067 | (*_node_data)[ni].heap.clear(); |
| | 1068 | (*_node_data)[ni].heap_index.clear(); |
| | 1069 | (*_node_data)[ni].pot += |
| | 1070 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
| | 1071 | |
| | 1072 | _delta1->push(n, (*_node_data)[ni].pot); |
| | 1073 | |
| | 1074 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 1075 | Node v = _graph.source(e); |
| | 1076 | int vb = _blossom_set->find(v); |
| | 1077 | int vi = (*_node_index)[v]; |
| | 1078 | |
| | 1079 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 1080 | dualScale * _weight[e]; |
| | 1081 | |
| | 1082 | if ((*_blossom_data)[vb].status == EVEN) { |
| | 1083 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| | 1084 | _delta3->push(e, rw / 2); |
| | 1085 | } |
| | 1086 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| | 1087 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
| | 1088 | _delta3->push(e, rw); |
| | 1089 | } |
| | 1090 | } else { |
| | 1091 | |
| | 1092 | typename std::map<int, Arc>::iterator it = |
| | 1093 | (*_node_data)[vi].heap_index.find(tree); |
| | 1094 | |
| | 1095 | if (it != (*_node_data)[vi].heap_index.end()) { |
| | 1096 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| | 1097 | (*_node_data)[vi].heap.replace(it->second, e); |
| | 1098 | (*_node_data)[vi].heap.decrease(e, rw); |
| | 1099 | it->second = e; |
| | 1100 | } |
| | 1101 | } else { |
| | 1102 | (*_node_data)[vi].heap.push(e, rw); |
| | 1103 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| | 1104 | } |
| | 1105 | |
| | 1106 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| | 1107 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| | 1108 | |
| | 1109 | if ((*_blossom_data)[vb].status == MATCHED) { |
| | 1110 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| | 1111 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| | 1112 | (*_blossom_data)[vb].offset); |
| | 1113 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| | 1114 | (*_blossom_data)[vb].offset) { |
| | 1115 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| | 1116 | (*_blossom_data)[vb].offset); |
| | 1117 | } |
| | 1118 | } |
| | 1119 | } |
| | 1120 | } |
| | 1121 | } |
| | 1122 | } |
| | 1123 | (*_blossom_data)[blossom].offset = 0; |
| | 1124 | } |
| | 1125 | |
| | 1126 | |
| | 1127 | void matchedToUnmatched(int blossom) { |
| | 1128 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 1129 | _delta2->erase(blossom); |
| | 1130 | } |
| | 1131 | |
| | 1132 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 1133 | n != INVALID; ++n) { |
| | 1134 | int ni = (*_node_index)[n]; |
| | 1135 | |
| | 1136 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| | 1137 | |
| | 1138 | (*_node_data)[ni].heap.clear(); |
| | 1139 | (*_node_data)[ni].heap_index.clear(); |
| | 1140 | |
| | 1141 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| | 1142 | Node v = _graph.target(e); |
| | 1143 | int vb = _blossom_set->find(v); |
| | 1144 | int vi = (*_node_index)[v]; |
| | 1145 | |
| | 1146 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 1147 | dualScale * _weight[e]; |
| | 1148 | |
| | 1149 | if ((*_blossom_data)[vb].status == EVEN) { |
| | 1150 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
| | 1151 | _delta3->push(e, rw); |
| | 1152 | } |
| | 1153 | } |
| | 1154 | } |
| | 1155 | } |
| | 1156 | } |
| | 1157 | |
| | 1158 | void unmatchedToMatched(int blossom) { |
| | 1159 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 1160 | n != INVALID; ++n) { |
| | 1161 | int ni = (*_node_index)[n]; |
| | 1162 | |
| | 1163 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 1164 | Node v = _graph.source(e); |
| | 1165 | int vb = _blossom_set->find(v); |
| | 1166 | int vi = (*_node_index)[v]; |
| | 1167 | |
| | 1168 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 1169 | dualScale * _weight[e]; |
| | 1170 | |
| | 1171 | if (vb == blossom) { |
| | 1172 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 1173 | _delta3->erase(e); |
| | 1174 | } |
| | 1175 | } else if ((*_blossom_data)[vb].status == EVEN) { |
| | 1176 | |
| | 1177 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 1178 | _delta3->erase(e); |
| | 1179 | } |
| | 1180 | |
| | 1181 | int vt = _tree_set->find(vb); |
| | 1182 | |
| | 1183 | Arc r = _graph.oppositeArc(e); |
| | 1184 | |
| | 1185 | typename std::map<int, Arc>::iterator it = |
| | 1186 | (*_node_data)[ni].heap_index.find(vt); |
| | 1187 | |
| | 1188 | if (it != (*_node_data)[ni].heap_index.end()) { |
| | 1189 | if ((*_node_data)[ni].heap[it->second] > rw) { |
| | 1190 | (*_node_data)[ni].heap.replace(it->second, r); |
| | 1191 | (*_node_data)[ni].heap.decrease(r, rw); |
| | 1192 | it->second = r; |
| | 1193 | } |
| | 1194 | } else { |
| | 1195 | (*_node_data)[ni].heap.push(r, rw); |
| | 1196 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| | 1197 | } |
| | 1198 | |
| | 1199 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
| | 1200 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| | 1201 | |
| | 1202 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
| | 1203 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| | 1204 | (*_blossom_data)[blossom].offset); |
| | 1205 | } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
| | 1206 | (*_blossom_data)[blossom].offset){ |
| | 1207 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| | 1208 | (*_blossom_data)[blossom].offset); |
| | 1209 | } |
| | 1210 | } |
| | 1211 | |
| | 1212 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| | 1213 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 1214 | _delta3->erase(e); |
| | 1215 | } |
| | 1216 | } |
| | 1217 | } |
| | 1218 | } |
| | 1219 | } |
| | 1220 | |
| | 1221 | void alternatePath(int even, int tree) { |
| | 1222 | int odd; |
| | 1223 | |
| | 1224 | evenToMatched(even, tree); |
| | 1225 | (*_blossom_data)[even].status = MATCHED; |
| | 1226 | |
| | 1227 | while ((*_blossom_data)[even].pred != INVALID) { |
| | 1228 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
| | 1229 | (*_blossom_data)[odd].status = MATCHED; |
| | 1230 | oddToMatched(odd); |
| | 1231 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
| | 1232 | |
| | 1233 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
| | 1234 | (*_blossom_data)[even].status = MATCHED; |
| | 1235 | evenToMatched(even, tree); |
| | 1236 | (*_blossom_data)[even].next = |
| | 1237 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
| | 1238 | } |
| | 1239 | |
| | 1240 | } |
| | 1241 | |
| | 1242 | void destroyTree(int tree) { |
| | 1243 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
| | 1244 | if ((*_blossom_data)[b].status == EVEN) { |
| | 1245 | (*_blossom_data)[b].status = MATCHED; |
| | 1246 | evenToMatched(b, tree); |
| | 1247 | } else if ((*_blossom_data)[b].status == ODD) { |
| | 1248 | (*_blossom_data)[b].status = MATCHED; |
| | 1249 | oddToMatched(b); |
| | 1250 | } |
| | 1251 | } |
| | 1252 | _tree_set->eraseClass(tree); |
| | 1253 | } |
| | 1254 | |
| | 1255 | |
| | 1256 | void unmatchNode(const Node& node) { |
| | 1257 | int blossom = _blossom_set->find(node); |
| | 1258 | int tree = _tree_set->find(blossom); |
| | 1259 | |
| | 1260 | alternatePath(blossom, tree); |
| | 1261 | destroyTree(tree); |
| | 1262 | |
| | 1263 | (*_blossom_data)[blossom].status = UNMATCHED; |
| | 1264 | (*_blossom_data)[blossom].base = node; |
| | 1265 | matchedToUnmatched(blossom); |
| | 1266 | } |
| | 1267 | |
| | 1268 | |
| | 1269 | void augmentOnArc(const Edge& arc) { |
| | 1270 | |
| | 1271 | int left = _blossom_set->find(_graph.u(arc)); |
| | 1272 | int right = _blossom_set->find(_graph.v(arc)); |
| | 1273 | |
| | 1274 | if ((*_blossom_data)[left].status == EVEN) { |
| | 1275 | int left_tree = _tree_set->find(left); |
| | 1276 | alternatePath(left, left_tree); |
| | 1277 | destroyTree(left_tree); |
| | 1278 | } else { |
| | 1279 | (*_blossom_data)[left].status = MATCHED; |
| | 1280 | unmatchedToMatched(left); |
| | 1281 | } |
| | 1282 | |
| | 1283 | if ((*_blossom_data)[right].status == EVEN) { |
| | 1284 | int right_tree = _tree_set->find(right); |
| | 1285 | alternatePath(right, right_tree); |
| | 1286 | destroyTree(right_tree); |
| | 1287 | } else { |
| | 1288 | (*_blossom_data)[right].status = MATCHED; |
| | 1289 | unmatchedToMatched(right); |
| | 1290 | } |
| | 1291 | |
| | 1292 | (*_blossom_data)[left].next = _graph.direct(arc, true); |
| | 1293 | (*_blossom_data)[right].next = _graph.direct(arc, false); |
| | 1294 | } |
| | 1295 | |
| | 1296 | void extendOnArc(const Arc& arc) { |
| | 1297 | int base = _blossom_set->find(_graph.target(arc)); |
| | 1298 | int tree = _tree_set->find(base); |
| | 1299 | |
| | 1300 | int odd = _blossom_set->find(_graph.source(arc)); |
| | 1301 | _tree_set->insert(odd, tree); |
| | 1302 | (*_blossom_data)[odd].status = ODD; |
| | 1303 | matchedToOdd(odd); |
| | 1304 | (*_blossom_data)[odd].pred = arc; |
| | 1305 | |
| | 1306 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
| | 1307 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
| | 1308 | _tree_set->insert(even, tree); |
| | 1309 | (*_blossom_data)[even].status = EVEN; |
| | 1310 | matchedToEven(even, tree); |
| | 1311 | } |
| | 1312 | |
| | 1313 | void shrinkOnArc(const Edge& edge, int tree) { |
| | 1314 | int nca = -1; |
| | 1315 | std::vector<int> left_path, right_path; |
| | 1316 | |
| | 1317 | { |
| | 1318 | std::set<int> left_set, right_set; |
| | 1319 | int left = _blossom_set->find(_graph.u(edge)); |
| | 1320 | left_path.push_back(left); |
| | 1321 | left_set.insert(left); |
| | 1322 | |
| | 1323 | int right = _blossom_set->find(_graph.v(edge)); |
| | 1324 | right_path.push_back(right); |
| | 1325 | right_set.insert(right); |
| | 1326 | |
| | 1327 | while (true) { |
| | 1328 | |
| | 1329 | if ((*_blossom_data)[left].pred == INVALID) break; |
| | 1330 | |
| | 1331 | left = |
| | 1332 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| | 1333 | left_path.push_back(left); |
| | 1334 | left = |
| | 1335 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| | 1336 | left_path.push_back(left); |
| | 1337 | |
| | 1338 | left_set.insert(left); |
| | 1339 | |
| | 1340 | if (right_set.find(left) != right_set.end()) { |
| | 1341 | nca = left; |
| | 1342 | break; |
| | 1343 | } |
| | 1344 | |
| | 1345 | if ((*_blossom_data)[right].pred == INVALID) break; |
| | 1346 | |
| | 1347 | right = |
| | 1348 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| | 1349 | right_path.push_back(right); |
| | 1350 | right = |
| | 1351 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| | 1352 | right_path.push_back(right); |
| | 1353 | |
| | 1354 | right_set.insert(right); |
| | 1355 | |
| | 1356 | if (left_set.find(right) != left_set.end()) { |
| | 1357 | nca = right; |
| | 1358 | break; |
| | 1359 | } |
| | 1360 | |
| | 1361 | } |
| | 1362 | |
| | 1363 | if (nca == -1) { |
| | 1364 | if ((*_blossom_data)[left].pred == INVALID) { |
| | 1365 | nca = right; |
| | 1366 | while (left_set.find(nca) == left_set.end()) { |
| | 1367 | nca = |
| | 1368 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 1369 | right_path.push_back(nca); |
| | 1370 | nca = |
| | 1371 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 1372 | right_path.push_back(nca); |
| | 1373 | } |
| | 1374 | } else { |
| | 1375 | nca = left; |
| | 1376 | while (right_set.find(nca) == right_set.end()) { |
| | 1377 | nca = |
| | 1378 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 1379 | left_path.push_back(nca); |
| | 1380 | nca = |
| | 1381 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 1382 | left_path.push_back(nca); |
| | 1383 | } |
| | 1384 | } |
| | 1385 | } |
| | 1386 | } |
| | 1387 | |
| | 1388 | std::vector<int> subblossoms; |
| | 1389 | Arc prev; |
| | 1390 | |
| | 1391 | prev = _graph.direct(edge, true); |
| | 1392 | for (int i = 0; left_path[i] != nca; i += 2) { |
| | 1393 | subblossoms.push_back(left_path[i]); |
| | 1394 | (*_blossom_data)[left_path[i]].next = prev; |
| | 1395 | _tree_set->erase(left_path[i]); |
| | 1396 | |
| | 1397 | subblossoms.push_back(left_path[i + 1]); |
| | 1398 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
| | 1399 | oddToEven(left_path[i + 1], tree); |
| | 1400 | _tree_set->erase(left_path[i + 1]); |
| | 1401 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
| | 1402 | } |
| | 1403 | |
| | 1404 | int k = 0; |
| | 1405 | while (right_path[k] != nca) ++k; |
| | 1406 | |
| | 1407 | subblossoms.push_back(nca); |
| | 1408 | (*_blossom_data)[nca].next = prev; |
| | 1409 | |
| | 1410 | for (int i = k - 2; i >= 0; i -= 2) { |
| | 1411 | subblossoms.push_back(right_path[i + 1]); |
| | 1412 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
| | 1413 | oddToEven(right_path[i + 1], tree); |
| | 1414 | _tree_set->erase(right_path[i + 1]); |
| | 1415 | |
| | 1416 | (*_blossom_data)[right_path[i + 1]].next = |
| | 1417 | (*_blossom_data)[right_path[i + 1]].pred; |
| | 1418 | |
| | 1419 | subblossoms.push_back(right_path[i]); |
| | 1420 | _tree_set->erase(right_path[i]); |
| | 1421 | } |
| | 1422 | |
| | 1423 | int surface = |
| | 1424 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
| | 1425 | |
| | 1426 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| | 1427 | if (!_blossom_set->trivial(subblossoms[i])) { |
| | 1428 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
| | 1429 | } |
| | 1430 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
| | 1431 | } |
| | 1432 | |
| | 1433 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
| | 1434 | (*_blossom_data)[surface].offset = 0; |
| | 1435 | (*_blossom_data)[surface].status = EVEN; |
| | 1436 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
| | 1437 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
| | 1438 | |
| | 1439 | _tree_set->insert(surface, tree); |
| | 1440 | _tree_set->erase(nca); |
| | 1441 | } |
| | 1442 | |
| | 1443 | void splitBlossom(int blossom) { |
| | 1444 | Arc next = (*_blossom_data)[blossom].next; |
| | 1445 | Arc pred = (*_blossom_data)[blossom].pred; |
| | 1446 | |
| | 1447 | int tree = _tree_set->find(blossom); |
| | 1448 | |
| | 1449 | (*_blossom_data)[blossom].status = MATCHED; |
| | 1450 | oddToMatched(blossom); |
| | 1451 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 1452 | _delta2->erase(blossom); |
| | 1453 | } |
| | 1454 | |
| | 1455 | std::vector<int> subblossoms; |
| | 1456 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| | 1457 | |
| | 1458 | Value offset = (*_blossom_data)[blossom].offset; |
| | 1459 | int b = _blossom_set->find(_graph.source(pred)); |
| | 1460 | int d = _blossom_set->find(_graph.source(next)); |
| | 1461 | |
| | 1462 | int ib = -1, id = -1; |
| | 1463 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| | 1464 | if (subblossoms[i] == b) ib = i; |
| | 1465 | if (subblossoms[i] == d) id = i; |
| | 1466 | |
| | 1467 | (*_blossom_data)[subblossoms[i]].offset = offset; |
| | 1468 | if (!_blossom_set->trivial(subblossoms[i])) { |
| | 1469 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
| | 1470 | } |
| | 1471 | if (_blossom_set->classPrio(subblossoms[i]) != |
| | 1472 | std::numeric_limits<Value>::max()) { |
| | 1473 | _delta2->push(subblossoms[i], |
| | 1474 | _blossom_set->classPrio(subblossoms[i]) - |
| | 1475 | (*_blossom_data)[subblossoms[i]].offset); |
| | 1476 | } |
| | 1477 | } |
| | 1478 | |
| | 1479 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
| | 1480 | for (int i = (id + 1) % subblossoms.size(); |
| | 1481 | i != ib; i = (i + 2) % subblossoms.size()) { |
| | 1482 | int sb = subblossoms[i]; |
| | 1483 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 1484 | (*_blossom_data)[sb].next = |
| | 1485 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 1486 | } |
| | 1487 | |
| | 1488 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
| | 1489 | int sb = subblossoms[i]; |
| | 1490 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 1491 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| | 1492 | |
| | 1493 | (*_blossom_data)[sb].status = ODD; |
| | 1494 | matchedToOdd(sb); |
| | 1495 | _tree_set->insert(sb, tree); |
| | 1496 | (*_blossom_data)[sb].pred = pred; |
| | 1497 | (*_blossom_data)[sb].next = |
| | 1498 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 1499 | |
| | 1500 | pred = (*_blossom_data)[ub].next; |
| | 1501 | |
| | 1502 | (*_blossom_data)[tb].status = EVEN; |
| | 1503 | matchedToEven(tb, tree); |
| | 1504 | _tree_set->insert(tb, tree); |
| | 1505 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| | 1506 | } |
| | 1507 | |
| | 1508 | (*_blossom_data)[subblossoms[id]].status = ODD; |
| | 1509 | matchedToOdd(subblossoms[id]); |
| | 1510 | _tree_set->insert(subblossoms[id], tree); |
| | 1511 | (*_blossom_data)[subblossoms[id]].next = next; |
| | 1512 | (*_blossom_data)[subblossoms[id]].pred = pred; |
| | 1513 | |
| | 1514 | } else { |
| | 1515 | |
| | 1516 | for (int i = (ib + 1) % subblossoms.size(); |
| | 1517 | i != id; i = (i + 2) % subblossoms.size()) { |
| | 1518 | int sb = subblossoms[i]; |
| | 1519 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 1520 | (*_blossom_data)[sb].next = |
| | 1521 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 1522 | } |
| | 1523 | |
| | 1524 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
| | 1525 | int sb = subblossoms[i]; |
| | 1526 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 1527 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| | 1528 | |
| | 1529 | (*_blossom_data)[sb].status = ODD; |
| | 1530 | matchedToOdd(sb); |
| | 1531 | _tree_set->insert(sb, tree); |
| | 1532 | (*_blossom_data)[sb].next = next; |
| | 1533 | (*_blossom_data)[sb].pred = |
| | 1534 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 1535 | |
| | 1536 | (*_blossom_data)[tb].status = EVEN; |
| | 1537 | matchedToEven(tb, tree); |
| | 1538 | _tree_set->insert(tb, tree); |
| | 1539 | (*_blossom_data)[tb].pred = |
| | 1540 | (*_blossom_data)[tb].next = |
| | 1541 | _graph.oppositeArc((*_blossom_data)[ub].next); |
| | 1542 | next = (*_blossom_data)[ub].next; |
| | 1543 | } |
| | 1544 | |
| | 1545 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
| | 1546 | matchedToOdd(subblossoms[ib]); |
| | 1547 | _tree_set->insert(subblossoms[ib], tree); |
| | 1548 | (*_blossom_data)[subblossoms[ib]].next = next; |
| | 1549 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
| | 1550 | } |
| | 1551 | _tree_set->erase(blossom); |
| | 1552 | } |
| | 1553 | |
| | 1554 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
| | 1555 | if (_blossom_set->trivial(blossom)) { |
| | 1556 | int bi = (*_node_index)[base]; |
| | 1557 | Value pot = (*_node_data)[bi].pot; |
| | 1558 | |
| | 1559 | _matching->set(base, matching); |
| | 1560 | _blossom_node_list.push_back(base); |
| | 1561 | _node_potential->set(base, pot); |
| | 1562 | } else { |
| | 1563 | |
| | 1564 | Value pot = (*_blossom_data)[blossom].pot; |
| | 1565 | int bn = _blossom_node_list.size(); |
| | 1566 | |
| | 1567 | std::vector<int> subblossoms; |
| | 1568 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| | 1569 | int b = _blossom_set->find(base); |
| | 1570 | int ib = -1; |
| | 1571 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| | 1572 | if (subblossoms[i] == b) { ib = i; break; } |
| | 1573 | } |
| | 1574 | |
| | 1575 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
| | 1576 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| | 1577 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| | 1578 | |
| | 1579 | Arc m = (*_blossom_data)[tb].next; |
| | 1580 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| | 1581 | extractBlossom(tb, _graph.source(m), m); |
| | 1582 | } |
| | 1583 | extractBlossom(subblossoms[ib], base, matching); |
| | 1584 | |
| | 1585 | int en = _blossom_node_list.size(); |
| | 1586 | |
| | 1587 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| | 1588 | } |
| | 1589 | } |
| | 1590 | |
| | 1591 | void extractMatching() { |
| | 1592 | std::vector<int> blossoms; |
| | 1593 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
| | 1594 | blossoms.push_back(c); |
| | 1595 | } |
| | 1596 | |
| | 1597 | for (int i = 0; i < int(blossoms.size()); ++i) { |
| | 1598 | if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
| | 1599 | |
| | 1600 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
| | 1601 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| | 1602 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| | 1603 | n != INVALID; ++n) { |
| | 1604 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
| | 1605 | } |
| | 1606 | |
| | 1607 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
| | 1608 | Node base = _graph.source(matching); |
| | 1609 | extractBlossom(blossoms[i], base, matching); |
| | 1610 | } else { |
| | 1611 | Node base = (*_blossom_data)[blossoms[i]].base; |
| | 1612 | extractBlossom(blossoms[i], base, INVALID); |
| | 1613 | } |
| | 1614 | } |
| | 1615 | } |
| | 1616 | |
| | 1617 | public: |
| | 1618 | |
| | 1619 | /// \brief Constructor |
| | 1620 | /// |
| | 1621 | /// Constructor. |
| | 1622 | MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
| | 1623 | : _graph(graph), _weight(weight), _matching(0), |
| | 1624 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
| | 1625 | _node_num(0), _blossom_num(0), |
| | 1626 | |
| | 1627 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
| | 1628 | _node_index(0), _node_heap_index(0), _node_data(0), |
| | 1629 | _tree_set_index(0), _tree_set(0), |
| | 1630 | |
| | 1631 | _delta1_index(0), _delta1(0), |
| | 1632 | _delta2_index(0), _delta2(0), |
| | 1633 | _delta3_index(0), _delta3(0), |
| | 1634 | _delta4_index(0), _delta4(0), |
| | 1635 | |
| | 1636 | _delta_sum() {} |
| | 1637 | |
| | 1638 | ~MaxWeightedMatching() { |
| | 1639 | destroyStructures(); |
| | 1640 | } |
| | 1641 | |
| | 1642 | /// \name Execution control |
| | 1643 | /// The simplest way to execute the algorithm is to use the member |
| | 1644 | /// \c run() member function. |
| | 1645 | |
| | 1646 | ///@{ |
| | 1647 | |
| | 1648 | /// \brief Initialize the algorithm |
| | 1649 | /// |
| | 1650 | /// Initialize the algorithm |
| | 1651 | void init() { |
| | 1652 | createStructures(); |
| | 1653 | |
| | 1654 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| | 1655 | _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP); |
| | 1656 | } |
| | 1657 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 1658 | _delta1_index->set(n, _delta1->PRE_HEAP); |
| | 1659 | } |
| | 1660 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| | 1661 | _delta3_index->set(e, _delta3->PRE_HEAP); |
| | 1662 | } |
| | 1663 | for (int i = 0; i < _blossom_num; ++i) { |
| | 1664 | _delta2_index->set(i, _delta2->PRE_HEAP); |
| | 1665 | _delta4_index->set(i, _delta4->PRE_HEAP); |
| | 1666 | } |
| | 1667 | |
| | 1668 | int index = 0; |
| | 1669 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 1670 | Value max = 0; |
| | 1671 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| | 1672 | if (_graph.target(e) == n) continue; |
| | 1673 | if ((dualScale * _weight[e]) / 2 > max) { |
| | 1674 | max = (dualScale * _weight[e]) / 2; |
| | 1675 | } |
| | 1676 | } |
| | 1677 | _node_index->set(n, index); |
| | 1678 | (*_node_data)[index].pot = max; |
| | 1679 | _delta1->push(n, max); |
| | 1680 | int blossom = |
| | 1681 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| | 1682 | |
| | 1683 | _tree_set->insert(blossom); |
| | 1684 | |
| | 1685 | (*_blossom_data)[blossom].status = EVEN; |
| | 1686 | (*_blossom_data)[blossom].pred = INVALID; |
| | 1687 | (*_blossom_data)[blossom].next = INVALID; |
| | 1688 | (*_blossom_data)[blossom].pot = 0; |
| | 1689 | (*_blossom_data)[blossom].offset = 0; |
| | 1690 | ++index; |
| | 1691 | } |
| | 1692 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| | 1693 | int si = (*_node_index)[_graph.u(e)]; |
| | 1694 | int ti = (*_node_index)[_graph.v(e)]; |
| | 1695 | if (_graph.u(e) != _graph.v(e)) { |
| | 1696 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| | 1697 | dualScale * _weight[e]) / 2); |
| | 1698 | } |
| | 1699 | } |
| | 1700 | } |
| | 1701 | |
| | 1702 | /// \brief Starts the algorithm |
| | 1703 | /// |
| | 1704 | /// Starts the algorithm |
| | 1705 | void start() { |
| | 1706 | enum OpType { |
| | 1707 | D1, D2, D3, D4 |
| | 1708 | }; |
| | 1709 | |
| | 1710 | int unmatched = _node_num; |
| | 1711 | while (unmatched > 0) { |
| | 1712 | Value d1 = !_delta1->empty() ? |
| | 1713 | _delta1->prio() : std::numeric_limits<Value>::max(); |
| | 1714 | |
| | 1715 | Value d2 = !_delta2->empty() ? |
| | 1716 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| | 1717 | |
| | 1718 | Value d3 = !_delta3->empty() ? |
| | 1719 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| | 1720 | |
| | 1721 | Value d4 = !_delta4->empty() ? |
| | 1722 | _delta4->prio() : std::numeric_limits<Value>::max(); |
| | 1723 | |
| | 1724 | _delta_sum = d1; OpType ot = D1; |
| | 1725 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
| | 1726 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
| | 1727 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
| | 1728 | |
| | 1729 | |
| | 1730 | switch (ot) { |
| | 1731 | case D1: |
| | 1732 | { |
| | 1733 | Node n = _delta1->top(); |
| | 1734 | unmatchNode(n); |
| | 1735 | --unmatched; |
| | 1736 | } |
| | 1737 | break; |
| | 1738 | case D2: |
| | 1739 | { |
| | 1740 | int blossom = _delta2->top(); |
| | 1741 | Node n = _blossom_set->classTop(blossom); |
| | 1742 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| | 1743 | extendOnArc(e); |
| | 1744 | } |
| | 1745 | break; |
| | 1746 | case D3: |
| | 1747 | { |
| | 1748 | Edge e = _delta3->top(); |
| | 1749 | |
| | 1750 | int left_blossom = _blossom_set->find(_graph.u(e)); |
| | 1751 | int right_blossom = _blossom_set->find(_graph.v(e)); |
| | 1752 | |
| | 1753 | if (left_blossom == right_blossom) { |
| | 1754 | _delta3->pop(); |
| | 1755 | } else { |
| | 1756 | int left_tree; |
| | 1757 | if ((*_blossom_data)[left_blossom].status == EVEN) { |
| | 1758 | left_tree = _tree_set->find(left_blossom); |
| | 1759 | } else { |
| | 1760 | left_tree = -1; |
| | 1761 | ++unmatched; |
| | 1762 | } |
| | 1763 | int right_tree; |
| | 1764 | if ((*_blossom_data)[right_blossom].status == EVEN) { |
| | 1765 | right_tree = _tree_set->find(right_blossom); |
| | 1766 | } else { |
| | 1767 | right_tree = -1; |
| | 1768 | ++unmatched; |
| | 1769 | } |
| | 1770 | |
| | 1771 | if (left_tree == right_tree) { |
| | 1772 | shrinkOnArc(e, left_tree); |
| | 1773 | } else { |
| | 1774 | augmentOnArc(e); |
| | 1775 | unmatched -= 2; |
| | 1776 | } |
| | 1777 | } |
| | 1778 | } break; |
| | 1779 | case D4: |
| | 1780 | splitBlossom(_delta4->top()); |
| | 1781 | break; |
| | 1782 | } |
| | 1783 | } |
| | 1784 | extractMatching(); |
| | 1785 | } |
| | 1786 | |
| | 1787 | /// \brief Runs %MaxWeightedMatching algorithm. |
| | 1788 | /// |
| | 1789 | /// This method runs the %MaxWeightedMatching algorithm. |
| | 1790 | /// |
| | 1791 | /// \note mwm.run() is just a shortcut of the following code. |
| | 1792 | /// \code |
| | 1793 | /// mwm.init(); |
| | 1794 | /// mwm.start(); |
| | 1795 | /// \endcode |
| | 1796 | void run() { |
| | 1797 | init(); |
| | 1798 | start(); |
| | 1799 | } |
| | 1800 | |
| | 1801 | /// @} |
| | 1802 | |
| | 1803 | /// \name Primal solution |
| | 1804 | /// Functions for get the primal solution, ie. the matching. |
| | 1805 | |
| | 1806 | /// @{ |
| | 1807 | |
| | 1808 | /// \brief Returns the matching value. |
| | 1809 | /// |
| | 1810 | /// Returns the matching value. |
| | 1811 | Value matchingValue() const { |
| | 1812 | Value sum = 0; |
| | 1813 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 1814 | if ((*_matching)[n] != INVALID) { |
| | 1815 | sum += _weight[(*_matching)[n]]; |
| | 1816 | } |
| | 1817 | } |
| | 1818 | return sum /= 2; |
| | 1819 | } |
| | 1820 | |
| | 1821 | /// \brief Returns true when the arc is in the matching. |
| | 1822 | /// |
| | 1823 | /// Returns true when the arc is in the matching. |
| | 1824 | bool matching(const Edge& arc) const { |
| | 1825 | return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true); |
| | 1826 | } |
| | 1827 | |
| | 1828 | /// \brief Returns the incident matching arc. |
| | 1829 | /// |
| | 1830 | /// Returns the incident matching arc from given node. If the |
| | 1831 | /// node is not matched then it gives back \c INVALID. |
| | 1832 | Arc matching(const Node& node) const { |
| | 1833 | return (*_matching)[node]; |
| | 1834 | } |
| | 1835 | |
| | 1836 | /// \brief Returns the mate of the node. |
| | 1837 | /// |
| | 1838 | /// Returns the adjancent node in a mathcing arc. If the node is |
| | 1839 | /// not matched then it gives back \c INVALID. |
| | 1840 | Node mate(const Node& node) const { |
| | 1841 | return (*_matching)[node] != INVALID ? |
| | 1842 | _graph.target((*_matching)[node]) : INVALID; |
| | 1843 | } |
| | 1844 | |
| | 1845 | /// @} |
| | 1846 | |
| | 1847 | /// \name Dual solution |
| | 1848 | /// Functions for get the dual solution. |
| | 1849 | |
| | 1850 | /// @{ |
| | 1851 | |
| | 1852 | /// \brief Returns the value of the dual solution. |
| | 1853 | /// |
| | 1854 | /// Returns the value of the dual solution. It should be equal to |
| | 1855 | /// the primal value scaled by \ref dualScale "dual scale". |
| | 1856 | Value dualValue() const { |
| | 1857 | Value sum = 0; |
| | 1858 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 1859 | sum += nodeValue(n); |
| | 1860 | } |
| | 1861 | for (int i = 0; i < blossomNum(); ++i) { |
| | 1862 | sum += blossomValue(i) * (blossomSize(i) / 2); |
| | 1863 | } |
| | 1864 | return sum; |
| | 1865 | } |
| | 1866 | |
| | 1867 | /// \brief Returns the value of the node. |
| | 1868 | /// |
| | 1869 | /// Returns the the value of the node. |
| | 1870 | Value nodeValue(const Node& n) const { |
| | 1871 | return (*_node_potential)[n]; |
| | 1872 | } |
| | 1873 | |
| | 1874 | /// \brief Returns the number of the blossoms in the basis. |
| | 1875 | /// |
| | 1876 | /// Returns the number of the blossoms in the basis. |
| | 1877 | /// \see BlossomIt |
| | 1878 | int blossomNum() const { |
| | 1879 | return _blossom_potential.size(); |
| | 1880 | } |
| | 1881 | |
| | 1882 | |
| | 1883 | /// \brief Returns the number of the nodes in the blossom. |
| | 1884 | /// |
| | 1885 | /// Returns the number of the nodes in the blossom. |
| | 1886 | int blossomSize(int k) const { |
| | 1887 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
| | 1888 | } |
| | 1889 | |
| | 1890 | /// \brief Returns the value of the blossom. |
| | 1891 | /// |
| | 1892 | /// Returns the the value of the blossom. |
| | 1893 | /// \see BlossomIt |
| | 1894 | Value blossomValue(int k) const { |
| | 1895 | return _blossom_potential[k].value; |
| | 1896 | } |
| | 1897 | |
| | 1898 | /// \brief Lemon iterator for get the items of the blossom. |
| | 1899 | /// |
| | 1900 | /// Lemon iterator for get the nodes of the blossom. This class |
| | 1901 | /// provides a common style lemon iterator which gives back a |
| | 1902 | /// subset of the nodes. |
| | 1903 | class BlossomIt { |
| | 1904 | public: |
| | 1905 | |
| | 1906 | /// \brief Constructor. |
| | 1907 | /// |
| | 1908 | /// Constructor for get the nodes of the variable. |
| | 1909 | BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
| | 1910 | : _algorithm(&algorithm) |
| | 1911 | { |
| | 1912 | _index = _algorithm->_blossom_potential[variable].begin; |
| | 1913 | _last = _algorithm->_blossom_potential[variable].end; |
| | 1914 | } |
| | 1915 | |
| | 1916 | /// \brief Invalid constructor. |
| | 1917 | /// |
| | 1918 | /// Invalid constructor. |
| | 1919 | BlossomIt(Invalid) : _index(-1) {} |
| | 1920 | |
| | 1921 | /// \brief Conversion to node. |
| | 1922 | /// |
| | 1923 | /// Conversion to node. |
| | 1924 | operator Node() const { |
| | 1925 | return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID; |
| | 1926 | } |
| | 1927 | |
| | 1928 | /// \brief Increment operator. |
| | 1929 | /// |
| | 1930 | /// Increment operator. |
| | 1931 | BlossomIt& operator++() { |
| | 1932 | ++_index; |
| | 1933 | if (_index == _last) { |
| | 1934 | _index = -1; |
| | 1935 | } |
| | 1936 | return *this; |
| | 1937 | } |
| | 1938 | |
| | 1939 | bool operator==(const BlossomIt& it) const { |
| | 1940 | return _index == it._index; |
| | 1941 | } |
| | 1942 | bool operator!=(const BlossomIt& it) const { |
| | 1943 | return _index != it._index; |
| | 1944 | } |
| | 1945 | |
| | 1946 | private: |
| | 1947 | const MaxWeightedMatching* _algorithm; |
| | 1948 | int _last; |
| | 1949 | int _index; |
| | 1950 | }; |
| | 1951 | |
| | 1952 | /// @} |
| | 1953 | |
| | 1954 | }; |
| | 1955 | |
| | 1956 | /// \ingroup matching |
| | 1957 | /// |
| | 1958 | /// \brief Weighted perfect matching in general graphs |
| | 1959 | /// |
| | 1960 | /// This class provides an efficient implementation of Edmond's |
| | 1961 | /// maximum weighted perfecr matching algorithm. The implementation |
| | 1962 | /// is based on extensive use of priority queues and provides |
| | 1963 | /// \f$O(nm\log(n))\f$ time complexity. |
| | 1964 | /// |
| | 1965 | /// The maximum weighted matching problem is to find undirected |
| | 1966 | /// arcs in the digraph with maximum overall weight and no two of |
| | 1967 | /// them shares their endpoints and covers all nodes. The problem |
| | 1968 | /// can be formulated with the next linear program: |
| | 1969 | /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
| | 1970 | ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] |
| | 1971 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
| | 1972 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| | 1973 | /// where \f$\delta(X)\f$ is the set of arcs incident to a node in |
| | 1974 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in |
| | 1975 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of |
| | 1976 | /// the nodes. |
| | 1977 | /// |
| | 1978 | /// The algorithm calculates an optimal matching and a proof of the |
| | 1979 | /// optimality. The solution of the dual problem can be used to check |
| | 1980 | /// the result of the algorithm. The dual linear problem is the next: |
| | 1981 | /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f] |
| | 1982 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
| | 1983 | /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f] |
| | 1984 | /// |
| | 1985 | /// The algorithm can be executed with \c run() or the \c init() and |
| | 1986 | /// then the \c start() member functions. After it the matching can |
| | 1987 | /// be asked with \c matching() or mate() functions. The dual |
| | 1988 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
| | 1989 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
| | 1990 | /// "BlossomIt" nested class which is able to iterate on the nodes |
| | 1991 | /// of a blossom. If the value type is integral then the dual |
| | 1992 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
| | 1993 | template <typename _Graph, |
| | 1994 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
| | 1995 | class MaxWeightedPerfectMatching { |
| | 1996 | public: |
| | 1997 | |
| | 1998 | typedef _Graph Graph; |
| | 1999 | typedef _WeightMap WeightMap; |
| | 2000 | typedef typename WeightMap::Value Value; |
| | 2001 | |
| | 2002 | /// \brief Scaling factor for dual solution |
| | 2003 | /// |
| | 2004 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
| | 2005 | /// according to the value type. |
| | 2006 | static const int dualScale = |
| | 2007 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| | 2008 | |
| | 2009 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
| | 2010 | MatchingMap; |
| | 2011 | |
| | 2012 | private: |
| | 2013 | |
| | 2014 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| | 2015 | |
| | 2016 | typedef typename Graph::template NodeMap<Value> NodePotential; |
| | 2017 | typedef std::vector<Node> BlossomNodeList; |
| | 2018 | |
| | 2019 | struct BlossomVariable { |
| | 2020 | int begin, end; |
| | 2021 | Value value; |
| | 2022 | |
| | 2023 | BlossomVariable(int _begin, int _end, Value _value) |
| | 2024 | : begin(_begin), end(_end), value(_value) {} |
| | 2025 | |
| | 2026 | }; |
| | 2027 | |
| | 2028 | typedef std::vector<BlossomVariable> BlossomPotential; |
| | 2029 | |
| | 2030 | const Graph& _graph; |
| | 2031 | const WeightMap& _weight; |
| | 2032 | |
| | 2033 | MatchingMap* _matching; |
| | 2034 | |
| | 2035 | NodePotential* _node_potential; |
| | 2036 | |
| | 2037 | BlossomPotential _blossom_potential; |
| | 2038 | BlossomNodeList _blossom_node_list; |
| | 2039 | |
| | 2040 | int _node_num; |
| | 2041 | int _blossom_num; |
| | 2042 | |
| | 2043 | typedef typename Graph::template NodeMap<int> NodeIntMap; |
| | 2044 | typedef typename Graph::template ArcMap<int> ArcIntMap; |
| | 2045 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
| | 2046 | typedef RangeMap<int> IntIntMap; |
| | 2047 | |
| | 2048 | enum Status { |
| | 2049 | EVEN = -1, MATCHED = 0, ODD = 1 |
| | 2050 | }; |
| | 2051 | |
| | 2052 | typedef HeapUnionFind<Value, NodeIntMap> BlossomSet; |
| | 2053 | struct BlossomData { |
| | 2054 | int tree; |
| | 2055 | Status status; |
| | 2056 | Arc pred, next; |
| | 2057 | Value pot, offset; |
| | 2058 | }; |
| | 2059 | |
| | 2060 | NodeIntMap *_blossom_index; |
| | 2061 | BlossomSet *_blossom_set; |
| | 2062 | RangeMap<BlossomData>* _blossom_data; |
| | 2063 | |
| | 2064 | NodeIntMap *_node_index; |
| | 2065 | ArcIntMap *_node_heap_index; |
| | 2066 | |
| | 2067 | struct NodeData { |
| | 2068 | |
| | 2069 | NodeData(ArcIntMap& node_heap_index) |
| | 2070 | : heap(node_heap_index) {} |
| | 2071 | |
| | 2072 | int blossom; |
| | 2073 | Value pot; |
| | 2074 | BinHeap<Value, ArcIntMap> heap; |
| | 2075 | std::map<int, Arc> heap_index; |
| | 2076 | |
| | 2077 | int tree; |
| | 2078 | }; |
| | 2079 | |
| | 2080 | RangeMap<NodeData>* _node_data; |
| | 2081 | |
| | 2082 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
| | 2083 | |
| | 2084 | IntIntMap *_tree_set_index; |
| | 2085 | TreeSet *_tree_set; |
| | 2086 | |
| | 2087 | IntIntMap *_delta2_index; |
| | 2088 | BinHeap<Value, IntIntMap> *_delta2; |
| | 2089 | |
| | 2090 | EdgeIntMap *_delta3_index; |
| | 2091 | BinHeap<Value, EdgeIntMap> *_delta3; |
| | 2092 | |
| | 2093 | IntIntMap *_delta4_index; |
| | 2094 | BinHeap<Value, IntIntMap> *_delta4; |
| | 2095 | |
| | 2096 | Value _delta_sum; |
| | 2097 | |
| | 2098 | void createStructures() { |
| | 2099 | _node_num = countNodes(_graph); |
| | 2100 | _blossom_num = _node_num * 3 / 2; |
| | 2101 | |
| | 2102 | if (!_matching) { |
| | 2103 | _matching = new MatchingMap(_graph); |
| | 2104 | } |
| | 2105 | if (!_node_potential) { |
| | 2106 | _node_potential = new NodePotential(_graph); |
| | 2107 | } |
| | 2108 | if (!_blossom_set) { |
| | 2109 | _blossom_index = new NodeIntMap(_graph); |
| | 2110 | _blossom_set = new BlossomSet(*_blossom_index); |
| | 2111 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| | 2112 | } |
| | 2113 | |
| | 2114 | if (!_node_index) { |
| | 2115 | _node_index = new NodeIntMap(_graph); |
| | 2116 | _node_heap_index = new ArcIntMap(_graph); |
| | 2117 | _node_data = new RangeMap<NodeData>(_node_num, |
| | 2118 | NodeData(*_node_heap_index)); |
| | 2119 | } |
| | 2120 | |
| | 2121 | if (!_tree_set) { |
| | 2122 | _tree_set_index = new IntIntMap(_blossom_num); |
| | 2123 | _tree_set = new TreeSet(*_tree_set_index); |
| | 2124 | } |
| | 2125 | if (!_delta2) { |
| | 2126 | _delta2_index = new IntIntMap(_blossom_num); |
| | 2127 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| | 2128 | } |
| | 2129 | if (!_delta3) { |
| | 2130 | _delta3_index = new EdgeIntMap(_graph); |
| | 2131 | _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index); |
| | 2132 | } |
| | 2133 | if (!_delta4) { |
| | 2134 | _delta4_index = new IntIntMap(_blossom_num); |
| | 2135 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| | 2136 | } |
| | 2137 | } |
| | 2138 | |
| | 2139 | void destroyStructures() { |
| | 2140 | _node_num = countNodes(_graph); |
| | 2141 | _blossom_num = _node_num * 3 / 2; |
| | 2142 | |
| | 2143 | if (_matching) { |
| | 2144 | delete _matching; |
| | 2145 | } |
| | 2146 | if (_node_potential) { |
| | 2147 | delete _node_potential; |
| | 2148 | } |
| | 2149 | if (_blossom_set) { |
| | 2150 | delete _blossom_index; |
| | 2151 | delete _blossom_set; |
| | 2152 | delete _blossom_data; |
| | 2153 | } |
| | 2154 | |
| | 2155 | if (_node_index) { |
| | 2156 | delete _node_index; |
| | 2157 | delete _node_heap_index; |
| | 2158 | delete _node_data; |
| | 2159 | } |
| | 2160 | |
| | 2161 | if (_tree_set) { |
| | 2162 | delete _tree_set_index; |
| | 2163 | delete _tree_set; |
| | 2164 | } |
| | 2165 | if (_delta2) { |
| | 2166 | delete _delta2_index; |
| | 2167 | delete _delta2; |
| | 2168 | } |
| | 2169 | if (_delta3) { |
| | 2170 | delete _delta3_index; |
| | 2171 | delete _delta3; |
| | 2172 | } |
| | 2173 | if (_delta4) { |
| | 2174 | delete _delta4_index; |
| | 2175 | delete _delta4; |
| | 2176 | } |
| | 2177 | } |
| | 2178 | |
| | 2179 | void matchedToEven(int blossom, int tree) { |
| | 2180 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 2181 | _delta2->erase(blossom); |
| | 2182 | } |
| | 2183 | |
| | 2184 | if (!_blossom_set->trivial(blossom)) { |
| | 2185 | (*_blossom_data)[blossom].pot -= |
| | 2186 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| | 2187 | } |
| | 2188 | |
| | 2189 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 2190 | n != INVALID; ++n) { |
| | 2191 | |
| | 2192 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| | 2193 | int ni = (*_node_index)[n]; |
| | 2194 | |
| | 2195 | (*_node_data)[ni].heap.clear(); |
| | 2196 | (*_node_data)[ni].heap_index.clear(); |
| | 2197 | |
| | 2198 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| | 2199 | |
| | 2200 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 2201 | Node v = _graph.source(e); |
| | 2202 | int vb = _blossom_set->find(v); |
| | 2203 | int vi = (*_node_index)[v]; |
| | 2204 | |
| | 2205 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 2206 | dualScale * _weight[e]; |
| | 2207 | |
| | 2208 | if ((*_blossom_data)[vb].status == EVEN) { |
| | 2209 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| | 2210 | _delta3->push(e, rw / 2); |
| | 2211 | } |
| | 2212 | } else { |
| | 2213 | typename std::map<int, Arc>::iterator it = |
| | 2214 | (*_node_data)[vi].heap_index.find(tree); |
| | 2215 | |
| | 2216 | if (it != (*_node_data)[vi].heap_index.end()) { |
| | 2217 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| | 2218 | (*_node_data)[vi].heap.replace(it->second, e); |
| | 2219 | (*_node_data)[vi].heap.decrease(e, rw); |
| | 2220 | it->second = e; |
| | 2221 | } |
| | 2222 | } else { |
| | 2223 | (*_node_data)[vi].heap.push(e, rw); |
| | 2224 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| | 2225 | } |
| | 2226 | |
| | 2227 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| | 2228 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| | 2229 | |
| | 2230 | if ((*_blossom_data)[vb].status == MATCHED) { |
| | 2231 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| | 2232 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| | 2233 | (*_blossom_data)[vb].offset); |
| | 2234 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| | 2235 | (*_blossom_data)[vb].offset){ |
| | 2236 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| | 2237 | (*_blossom_data)[vb].offset); |
| | 2238 | } |
| | 2239 | } |
| | 2240 | } |
| | 2241 | } |
| | 2242 | } |
| | 2243 | } |
| | 2244 | (*_blossom_data)[blossom].offset = 0; |
| | 2245 | } |
| | 2246 | |
| | 2247 | void matchedToOdd(int blossom) { |
| | 2248 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 2249 | _delta2->erase(blossom); |
| | 2250 | } |
| | 2251 | (*_blossom_data)[blossom].offset += _delta_sum; |
| | 2252 | if (!_blossom_set->trivial(blossom)) { |
| | 2253 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
| | 2254 | (*_blossom_data)[blossom].offset); |
| | 2255 | } |
| | 2256 | } |
| | 2257 | |
| | 2258 | void evenToMatched(int blossom, int tree) { |
| | 2259 | if (!_blossom_set->trivial(blossom)) { |
| | 2260 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
| | 2261 | } |
| | 2262 | |
| | 2263 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 2264 | n != INVALID; ++n) { |
| | 2265 | int ni = (*_node_index)[n]; |
| | 2266 | (*_node_data)[ni].pot -= _delta_sum; |
| | 2267 | |
| | 2268 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 2269 | Node v = _graph.source(e); |
| | 2270 | int vb = _blossom_set->find(v); |
| | 2271 | int vi = (*_node_index)[v]; |
| | 2272 | |
| | 2273 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 2274 | dualScale * _weight[e]; |
| | 2275 | |
| | 2276 | if (vb == blossom) { |
| | 2277 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 2278 | _delta3->erase(e); |
| | 2279 | } |
| | 2280 | } else if ((*_blossom_data)[vb].status == EVEN) { |
| | 2281 | |
| | 2282 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| | 2283 | _delta3->erase(e); |
| | 2284 | } |
| | 2285 | |
| | 2286 | int vt = _tree_set->find(vb); |
| | 2287 | |
| | 2288 | if (vt != tree) { |
| | 2289 | |
| | 2290 | Arc r = _graph.oppositeArc(e); |
| | 2291 | |
| | 2292 | typename std::map<int, Arc>::iterator it = |
| | 2293 | (*_node_data)[ni].heap_index.find(vt); |
| | 2294 | |
| | 2295 | if (it != (*_node_data)[ni].heap_index.end()) { |
| | 2296 | if ((*_node_data)[ni].heap[it->second] > rw) { |
| | 2297 | (*_node_data)[ni].heap.replace(it->second, r); |
| | 2298 | (*_node_data)[ni].heap.decrease(r, rw); |
| | 2299 | it->second = r; |
| | 2300 | } |
| | 2301 | } else { |
| | 2302 | (*_node_data)[ni].heap.push(r, rw); |
| | 2303 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| | 2304 | } |
| | 2305 | |
| | 2306 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
| | 2307 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| | 2308 | |
| | 2309 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
| | 2310 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| | 2311 | (*_blossom_data)[blossom].offset); |
| | 2312 | } else if ((*_delta2)[blossom] > |
| | 2313 | _blossom_set->classPrio(blossom) - |
| | 2314 | (*_blossom_data)[blossom].offset){ |
| | 2315 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| | 2316 | (*_blossom_data)[blossom].offset); |
| | 2317 | } |
| | 2318 | } |
| | 2319 | } |
| | 2320 | } else { |
| | 2321 | |
| | 2322 | typename std::map<int, Arc>::iterator it = |
| | 2323 | (*_node_data)[vi].heap_index.find(tree); |
| | 2324 | |
| | 2325 | if (it != (*_node_data)[vi].heap_index.end()) { |
| | 2326 | (*_node_data)[vi].heap.erase(it->second); |
| | 2327 | (*_node_data)[vi].heap_index.erase(it); |
| | 2328 | if ((*_node_data)[vi].heap.empty()) { |
| | 2329 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
| | 2330 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
| | 2331 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
| | 2332 | } |
| | 2333 | |
| | 2334 | if ((*_blossom_data)[vb].status == MATCHED) { |
| | 2335 | if (_blossom_set->classPrio(vb) == |
| | 2336 | std::numeric_limits<Value>::max()) { |
| | 2337 | _delta2->erase(vb); |
| | 2338 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
| | 2339 | (*_blossom_data)[vb].offset) { |
| | 2340 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
| | 2341 | (*_blossom_data)[vb].offset); |
| | 2342 | } |
| | 2343 | } |
| | 2344 | } |
| | 2345 | } |
| | 2346 | } |
| | 2347 | } |
| | 2348 | } |
| | 2349 | |
| | 2350 | void oddToMatched(int blossom) { |
| | 2351 | (*_blossom_data)[blossom].offset -= _delta_sum; |
| | 2352 | |
| | 2353 | if (_blossom_set->classPrio(blossom) != |
| | 2354 | std::numeric_limits<Value>::max()) { |
| | 2355 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| | 2356 | (*_blossom_data)[blossom].offset); |
| | 2357 | } |
| | 2358 | |
| | 2359 | if (!_blossom_set->trivial(blossom)) { |
| | 2360 | _delta4->erase(blossom); |
| | 2361 | } |
| | 2362 | } |
| | 2363 | |
| | 2364 | void oddToEven(int blossom, int tree) { |
| | 2365 | if (!_blossom_set->trivial(blossom)) { |
| | 2366 | _delta4->erase(blossom); |
| | 2367 | (*_blossom_data)[blossom].pot -= |
| | 2368 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
| | 2369 | } |
| | 2370 | |
| | 2371 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| | 2372 | n != INVALID; ++n) { |
| | 2373 | int ni = (*_node_index)[n]; |
| | 2374 | |
| | 2375 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| | 2376 | |
| | 2377 | (*_node_data)[ni].heap.clear(); |
| | 2378 | (*_node_data)[ni].heap_index.clear(); |
| | 2379 | (*_node_data)[ni].pot += |
| | 2380 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
| | 2381 | |
| | 2382 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| | 2383 | Node v = _graph.source(e); |
| | 2384 | int vb = _blossom_set->find(v); |
| | 2385 | int vi = (*_node_index)[v]; |
| | 2386 | |
| | 2387 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| | 2388 | dualScale * _weight[e]; |
| | 2389 | |
| | 2390 | if ((*_blossom_data)[vb].status == EVEN) { |
| | 2391 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| | 2392 | _delta3->push(e, rw / 2); |
| | 2393 | } |
| | 2394 | } else { |
| | 2395 | |
| | 2396 | typename std::map<int, Arc>::iterator it = |
| | 2397 | (*_node_data)[vi].heap_index.find(tree); |
| | 2398 | |
| | 2399 | if (it != (*_node_data)[vi].heap_index.end()) { |
| | 2400 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| | 2401 | (*_node_data)[vi].heap.replace(it->second, e); |
| | 2402 | (*_node_data)[vi].heap.decrease(e, rw); |
| | 2403 | it->second = e; |
| | 2404 | } |
| | 2405 | } else { |
| | 2406 | (*_node_data)[vi].heap.push(e, rw); |
| | 2407 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| | 2408 | } |
| | 2409 | |
| | 2410 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| | 2411 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| | 2412 | |
| | 2413 | if ((*_blossom_data)[vb].status == MATCHED) { |
| | 2414 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| | 2415 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| | 2416 | (*_blossom_data)[vb].offset); |
| | 2417 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| | 2418 | (*_blossom_data)[vb].offset) { |
| | 2419 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| | 2420 | (*_blossom_data)[vb].offset); |
| | 2421 | } |
| | 2422 | } |
| | 2423 | } |
| | 2424 | } |
| | 2425 | } |
| | 2426 | } |
| | 2427 | (*_blossom_data)[blossom].offset = 0; |
| | 2428 | } |
| | 2429 | |
| | 2430 | void alternatePath(int even, int tree) { |
| | 2431 | int odd; |
| | 2432 | |
| | 2433 | evenToMatched(even, tree); |
| | 2434 | (*_blossom_data)[even].status = MATCHED; |
| | 2435 | |
| | 2436 | while ((*_blossom_data)[even].pred != INVALID) { |
| | 2437 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
| | 2438 | (*_blossom_data)[odd].status = MATCHED; |
| | 2439 | oddToMatched(odd); |
| | 2440 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
| | 2441 | |
| | 2442 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
| | 2443 | (*_blossom_data)[even].status = MATCHED; |
| | 2444 | evenToMatched(even, tree); |
| | 2445 | (*_blossom_data)[even].next = |
| | 2446 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
| | 2447 | } |
| | 2448 | |
| | 2449 | } |
| | 2450 | |
| | 2451 | void destroyTree(int tree) { |
| | 2452 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
| | 2453 | if ((*_blossom_data)[b].status == EVEN) { |
| | 2454 | (*_blossom_data)[b].status = MATCHED; |
| | 2455 | evenToMatched(b, tree); |
| | 2456 | } else if ((*_blossom_data)[b].status == ODD) { |
| | 2457 | (*_blossom_data)[b].status = MATCHED; |
| | 2458 | oddToMatched(b); |
| | 2459 | } |
| | 2460 | } |
| | 2461 | _tree_set->eraseClass(tree); |
| | 2462 | } |
| | 2463 | |
| | 2464 | void augmentOnArc(const Edge& arc) { |
| | 2465 | |
| | 2466 | int left = _blossom_set->find(_graph.u(arc)); |
| | 2467 | int right = _blossom_set->find(_graph.v(arc)); |
| | 2468 | |
| | 2469 | int left_tree = _tree_set->find(left); |
| | 2470 | alternatePath(left, left_tree); |
| | 2471 | destroyTree(left_tree); |
| | 2472 | |
| | 2473 | int right_tree = _tree_set->find(right); |
| | 2474 | alternatePath(right, right_tree); |
| | 2475 | destroyTree(right_tree); |
| | 2476 | |
| | 2477 | (*_blossom_data)[left].next = _graph.direct(arc, true); |
| | 2478 | (*_blossom_data)[right].next = _graph.direct(arc, false); |
| | 2479 | } |
| | 2480 | |
| | 2481 | void extendOnArc(const Arc& arc) { |
| | 2482 | int base = _blossom_set->find(_graph.target(arc)); |
| | 2483 | int tree = _tree_set->find(base); |
| | 2484 | |
| | 2485 | int odd = _blossom_set->find(_graph.source(arc)); |
| | 2486 | _tree_set->insert(odd, tree); |
| | 2487 | (*_blossom_data)[odd].status = ODD; |
| | 2488 | matchedToOdd(odd); |
| | 2489 | (*_blossom_data)[odd].pred = arc; |
| | 2490 | |
| | 2491 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
| | 2492 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
| | 2493 | _tree_set->insert(even, tree); |
| | 2494 | (*_blossom_data)[even].status = EVEN; |
| | 2495 | matchedToEven(even, tree); |
| | 2496 | } |
| | 2497 | |
| | 2498 | void shrinkOnArc(const Edge& edge, int tree) { |
| | 2499 | int nca = -1; |
| | 2500 | std::vector<int> left_path, right_path; |
| | 2501 | |
| | 2502 | { |
| | 2503 | std::set<int> left_set, right_set; |
| | 2504 | int left = _blossom_set->find(_graph.u(edge)); |
| | 2505 | left_path.push_back(left); |
| | 2506 | left_set.insert(left); |
| | 2507 | |
| | 2508 | int right = _blossom_set->find(_graph.v(edge)); |
| | 2509 | right_path.push_back(right); |
| | 2510 | right_set.insert(right); |
| | 2511 | |
| | 2512 | while (true) { |
| | 2513 | |
| | 2514 | if ((*_blossom_data)[left].pred == INVALID) break; |
| | 2515 | |
| | 2516 | left = |
| | 2517 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| | 2518 | left_path.push_back(left); |
| | 2519 | left = |
| | 2520 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| | 2521 | left_path.push_back(left); |
| | 2522 | |
| | 2523 | left_set.insert(left); |
| | 2524 | |
| | 2525 | if (right_set.find(left) != right_set.end()) { |
| | 2526 | nca = left; |
| | 2527 | break; |
| | 2528 | } |
| | 2529 | |
| | 2530 | if ((*_blossom_data)[right].pred == INVALID) break; |
| | 2531 | |
| | 2532 | right = |
| | 2533 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| | 2534 | right_path.push_back(right); |
| | 2535 | right = |
| | 2536 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| | 2537 | right_path.push_back(right); |
| | 2538 | |
| | 2539 | right_set.insert(right); |
| | 2540 | |
| | 2541 | if (left_set.find(right) != left_set.end()) { |
| | 2542 | nca = right; |
| | 2543 | break; |
| | 2544 | } |
| | 2545 | |
| | 2546 | } |
| | 2547 | |
| | 2548 | if (nca == -1) { |
| | 2549 | if ((*_blossom_data)[left].pred == INVALID) { |
| | 2550 | nca = right; |
| | 2551 | while (left_set.find(nca) == left_set.end()) { |
| | 2552 | nca = |
| | 2553 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 2554 | right_path.push_back(nca); |
| | 2555 | nca = |
| | 2556 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 2557 | right_path.push_back(nca); |
| | 2558 | } |
| | 2559 | } else { |
| | 2560 | nca = left; |
| | 2561 | while (right_set.find(nca) == right_set.end()) { |
| | 2562 | nca = |
| | 2563 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 2564 | left_path.push_back(nca); |
| | 2565 | nca = |
| | 2566 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| | 2567 | left_path.push_back(nca); |
| | 2568 | } |
| | 2569 | } |
| | 2570 | } |
| | 2571 | } |
| | 2572 | |
| | 2573 | std::vector<int> subblossoms; |
| | 2574 | Arc prev; |
| | 2575 | |
| | 2576 | prev = _graph.direct(edge, true); |
| | 2577 | for (int i = 0; left_path[i] != nca; i += 2) { |
| | 2578 | subblossoms.push_back(left_path[i]); |
| | 2579 | (*_blossom_data)[left_path[i]].next = prev; |
| | 2580 | _tree_set->erase(left_path[i]); |
| | 2581 | |
| | 2582 | subblossoms.push_back(left_path[i + 1]); |
| | 2583 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
| | 2584 | oddToEven(left_path[i + 1], tree); |
| | 2585 | _tree_set->erase(left_path[i + 1]); |
| | 2586 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
| | 2587 | } |
| | 2588 | |
| | 2589 | int k = 0; |
| | 2590 | while (right_path[k] != nca) ++k; |
| | 2591 | |
| | 2592 | subblossoms.push_back(nca); |
| | 2593 | (*_blossom_data)[nca].next = prev; |
| | 2594 | |
| | 2595 | for (int i = k - 2; i >= 0; i -= 2) { |
| | 2596 | subblossoms.push_back(right_path[i + 1]); |
| | 2597 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
| | 2598 | oddToEven(right_path[i + 1], tree); |
| | 2599 | _tree_set->erase(right_path[i + 1]); |
| | 2600 | |
| | 2601 | (*_blossom_data)[right_path[i + 1]].next = |
| | 2602 | (*_blossom_data)[right_path[i + 1]].pred; |
| | 2603 | |
| | 2604 | subblossoms.push_back(right_path[i]); |
| | 2605 | _tree_set->erase(right_path[i]); |
| | 2606 | } |
| | 2607 | |
| | 2608 | int surface = |
| | 2609 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
| | 2610 | |
| | 2611 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| | 2612 | if (!_blossom_set->trivial(subblossoms[i])) { |
| | 2613 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
| | 2614 | } |
| | 2615 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
| | 2616 | } |
| | 2617 | |
| | 2618 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
| | 2619 | (*_blossom_data)[surface].offset = 0; |
| | 2620 | (*_blossom_data)[surface].status = EVEN; |
| | 2621 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
| | 2622 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
| | 2623 | |
| | 2624 | _tree_set->insert(surface, tree); |
| | 2625 | _tree_set->erase(nca); |
| | 2626 | } |
| | 2627 | |
| | 2628 | void splitBlossom(int blossom) { |
| | 2629 | Arc next = (*_blossom_data)[blossom].next; |
| | 2630 | Arc pred = (*_blossom_data)[blossom].pred; |
| | 2631 | |
| | 2632 | int tree = _tree_set->find(blossom); |
| | 2633 | |
| | 2634 | (*_blossom_data)[blossom].status = MATCHED; |
| | 2635 | oddToMatched(blossom); |
| | 2636 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| | 2637 | _delta2->erase(blossom); |
| | 2638 | } |
| | 2639 | |
| | 2640 | std::vector<int> subblossoms; |
| | 2641 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| | 2642 | |
| | 2643 | Value offset = (*_blossom_data)[blossom].offset; |
| | 2644 | int b = _blossom_set->find(_graph.source(pred)); |
| | 2645 | int d = _blossom_set->find(_graph.source(next)); |
| | 2646 | |
| | 2647 | int ib = -1, id = -1; |
| | 2648 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| | 2649 | if (subblossoms[i] == b) ib = i; |
| | 2650 | if (subblossoms[i] == d) id = i; |
| | 2651 | |
| | 2652 | (*_blossom_data)[subblossoms[i]].offset = offset; |
| | 2653 | if (!_blossom_set->trivial(subblossoms[i])) { |
| | 2654 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
| | 2655 | } |
| | 2656 | if (_blossom_set->classPrio(subblossoms[i]) != |
| | 2657 | std::numeric_limits<Value>::max()) { |
| | 2658 | _delta2->push(subblossoms[i], |
| | 2659 | _blossom_set->classPrio(subblossoms[i]) - |
| | 2660 | (*_blossom_data)[subblossoms[i]].offset); |
| | 2661 | } |
| | 2662 | } |
| | 2663 | |
| | 2664 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
| | 2665 | for (int i = (id + 1) % subblossoms.size(); |
| | 2666 | i != ib; i = (i + 2) % subblossoms.size()) { |
| | 2667 | int sb = subblossoms[i]; |
| | 2668 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 2669 | (*_blossom_data)[sb].next = |
| | 2670 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 2671 | } |
| | 2672 | |
| | 2673 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
| | 2674 | int sb = subblossoms[i]; |
| | 2675 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 2676 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| | 2677 | |
| | 2678 | (*_blossom_data)[sb].status = ODD; |
| | 2679 | matchedToOdd(sb); |
| | 2680 | _tree_set->insert(sb, tree); |
| | 2681 | (*_blossom_data)[sb].pred = pred; |
| | 2682 | (*_blossom_data)[sb].next = |
| | 2683 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 2684 | |
| | 2685 | pred = (*_blossom_data)[ub].next; |
| | 2686 | |
| | 2687 | (*_blossom_data)[tb].status = EVEN; |
| | 2688 | matchedToEven(tb, tree); |
| | 2689 | _tree_set->insert(tb, tree); |
| | 2690 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| | 2691 | } |
| | 2692 | |
| | 2693 | (*_blossom_data)[subblossoms[id]].status = ODD; |
| | 2694 | matchedToOdd(subblossoms[id]); |
| | 2695 | _tree_set->insert(subblossoms[id], tree); |
| | 2696 | (*_blossom_data)[subblossoms[id]].next = next; |
| | 2697 | (*_blossom_data)[subblossoms[id]].pred = pred; |
| | 2698 | |
| | 2699 | } else { |
| | 2700 | |
| | 2701 | for (int i = (ib + 1) % subblossoms.size(); |
| | 2702 | i != id; i = (i + 2) % subblossoms.size()) { |
| | 2703 | int sb = subblossoms[i]; |
| | 2704 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 2705 | (*_blossom_data)[sb].next = |
| | 2706 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 2707 | } |
| | 2708 | |
| | 2709 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
| | 2710 | int sb = subblossoms[i]; |
| | 2711 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| | 2712 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| | 2713 | |
| | 2714 | (*_blossom_data)[sb].status = ODD; |
| | 2715 | matchedToOdd(sb); |
| | 2716 | _tree_set->insert(sb, tree); |
| | 2717 | (*_blossom_data)[sb].next = next; |
| | 2718 | (*_blossom_data)[sb].pred = |
| | 2719 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| | 2720 | |
| | 2721 | (*_blossom_data)[tb].status = EVEN; |
| | 2722 | matchedToEven(tb, tree); |
| | 2723 | _tree_set->insert(tb, tree); |
| | 2724 | (*_blossom_data)[tb].pred = |
| | 2725 | (*_blossom_data)[tb].next = |
| | 2726 | _graph.oppositeArc((*_blossom_data)[ub].next); |
| | 2727 | next = (*_blossom_data)[ub].next; |
| | 2728 | } |
| | 2729 | |
| | 2730 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
| | 2731 | matchedToOdd(subblossoms[ib]); |
| | 2732 | _tree_set->insert(subblossoms[ib], tree); |
| | 2733 | (*_blossom_data)[subblossoms[ib]].next = next; |
| | 2734 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
| | 2735 | } |
| | 2736 | _tree_set->erase(blossom); |
| | 2737 | } |
| | 2738 | |
| | 2739 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
| | 2740 | if (_blossom_set->trivial(blossom)) { |
| | 2741 | int bi = (*_node_index)[base]; |
| | 2742 | Value pot = (*_node_data)[bi].pot; |
| | 2743 | |
| | 2744 | _matching->set(base, matching); |
| | 2745 | _blossom_node_list.push_back(base); |
| | 2746 | _node_potential->set(base, pot); |
| | 2747 | } else { |
| | 2748 | |
| | 2749 | Value pot = (*_blossom_data)[blossom].pot; |
| | 2750 | int bn = _blossom_node_list.size(); |
| | 2751 | |
| | 2752 | std::vector<int> subblossoms; |
| | 2753 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| | 2754 | int b = _blossom_set->find(base); |
| | 2755 | int ib = -1; |
| | 2756 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| | 2757 | if (subblossoms[i] == b) { ib = i; break; } |
| | 2758 | } |
| | 2759 | |
| | 2760 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
| | 2761 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| | 2762 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| | 2763 | |
| | 2764 | Arc m = (*_blossom_data)[tb].next; |
| | 2765 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| | 2766 | extractBlossom(tb, _graph.source(m), m); |
| | 2767 | } |
| | 2768 | extractBlossom(subblossoms[ib], base, matching); |
| | 2769 | |
| | 2770 | int en = _blossom_node_list.size(); |
| | 2771 | |
| | 2772 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| | 2773 | } |
| | 2774 | } |
| | 2775 | |
| | 2776 | void extractMatching() { |
| | 2777 | std::vector<int> blossoms; |
| | 2778 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
| | 2779 | blossoms.push_back(c); |
| | 2780 | } |
| | 2781 | |
| | 2782 | for (int i = 0; i < int(blossoms.size()); ++i) { |
| | 2783 | |
| | 2784 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
| | 2785 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| | 2786 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| | 2787 | n != INVALID; ++n) { |
| | 2788 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
| | 2789 | } |
| | 2790 | |
| | 2791 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
| | 2792 | Node base = _graph.source(matching); |
| | 2793 | extractBlossom(blossoms[i], base, matching); |
| | 2794 | } |
| | 2795 | } |
| | 2796 | |
| | 2797 | public: |
| | 2798 | |
| | 2799 | /// \brief Constructor |
| | 2800 | /// |
| | 2801 | /// Constructor. |
| | 2802 | MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
| | 2803 | : _graph(graph), _weight(weight), _matching(0), |
| | 2804 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
| | 2805 | _node_num(0), _blossom_num(0), |
| | 2806 | |
| | 2807 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
| | 2808 | _node_index(0), _node_heap_index(0), _node_data(0), |
| | 2809 | _tree_set_index(0), _tree_set(0), |
| | 2810 | |
| | 2811 | _delta2_index(0), _delta2(0), |
| | 2812 | _delta3_index(0), _delta3(0), |
| | 2813 | _delta4_index(0), _delta4(0), |
| | 2814 | |
| | 2815 | _delta_sum() {} |
| | 2816 | |
| | 2817 | ~MaxWeightedPerfectMatching() { |
| | 2818 | destroyStructures(); |
| | 2819 | } |
| | 2820 | |
| | 2821 | /// \name Execution control |
| | 2822 | /// The simplest way to execute the algorithm is to use the member |
| | 2823 | /// \c run() member function. |
| | 2824 | |
| | 2825 | ///@{ |
| | 2826 | |
| | 2827 | /// \brief Initialize the algorithm |
| | 2828 | /// |
| | 2829 | /// Initialize the algorithm |
| | 2830 | void init() { |
| | 2831 | createStructures(); |
| | 2832 | |
| | 2833 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| | 2834 | _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP); |
| | 2835 | } |
| | 2836 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| | 2837 | _delta3_index->set(e, _delta3->PRE_HEAP); |
| | 2838 | } |
| | 2839 | for (int i = 0; i < _blossom_num; ++i) { |
| | 2840 | _delta2_index->set(i, _delta2->PRE_HEAP); |
| | 2841 | _delta4_index->set(i, _delta4->PRE_HEAP); |
| | 2842 | } |
| | 2843 | |
| | 2844 | int index = 0; |
| | 2845 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 2846 | Value max = - std::numeric_limits<Value>::max(); |
| | 2847 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| | 2848 | if (_graph.target(e) == n) continue; |
| | 2849 | if ((dualScale * _weight[e]) / 2 > max) { |
| | 2850 | max = (dualScale * _weight[e]) / 2; |
| | 2851 | } |
| | 2852 | } |
| | 2853 | _node_index->set(n, index); |
| | 2854 | (*_node_data)[index].pot = max; |
| | 2855 | int blossom = |
| | 2856 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| | 2857 | |
| | 2858 | _tree_set->insert(blossom); |
| | 2859 | |
| | 2860 | (*_blossom_data)[blossom].status = EVEN; |
| | 2861 | (*_blossom_data)[blossom].pred = INVALID; |
| | 2862 | (*_blossom_data)[blossom].next = INVALID; |
| | 2863 | (*_blossom_data)[blossom].pot = 0; |
| | 2864 | (*_blossom_data)[blossom].offset = 0; |
| | 2865 | ++index; |
| | 2866 | } |
| | 2867 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| | 2868 | int si = (*_node_index)[_graph.u(e)]; |
| | 2869 | int ti = (*_node_index)[_graph.v(e)]; |
| | 2870 | if (_graph.u(e) != _graph.v(e)) { |
| | 2871 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| | 2872 | dualScale * _weight[e]) / 2); |
| | 2873 | } |
| | 2874 | } |
| | 2875 | } |
| | 2876 | |
| | 2877 | /// \brief Starts the algorithm |
| | 2878 | /// |
| | 2879 | /// Starts the algorithm |
| | 2880 | bool start() { |
| | 2881 | enum OpType { |
| | 2882 | D2, D3, D4 |
| | 2883 | }; |
| | 2884 | |
| | 2885 | int unmatched = _node_num; |
| | 2886 | while (unmatched > 0) { |
| | 2887 | Value d2 = !_delta2->empty() ? |
| | 2888 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| | 2889 | |
| | 2890 | Value d3 = !_delta3->empty() ? |
| | 2891 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| | 2892 | |
| | 2893 | Value d4 = !_delta4->empty() ? |
| | 2894 | _delta4->prio() : std::numeric_limits<Value>::max(); |
| | 2895 | |
| | 2896 | _delta_sum = d2; OpType ot = D2; |
| | 2897 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
| | 2898 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
| | 2899 | |
| | 2900 | if (_delta_sum == std::numeric_limits<Value>::max()) { |
| | 2901 | return false; |
| | 2902 | } |
| | 2903 | |
| | 2904 | switch (ot) { |
| | 2905 | case D2: |
| | 2906 | { |
| | 2907 | int blossom = _delta2->top(); |
| | 2908 | Node n = _blossom_set->classTop(blossom); |
| | 2909 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| | 2910 | extendOnArc(e); |
| | 2911 | } |
| | 2912 | break; |
| | 2913 | case D3: |
| | 2914 | { |
| | 2915 | Edge e = _delta3->top(); |
| | 2916 | |
| | 2917 | int left_blossom = _blossom_set->find(_graph.u(e)); |
| | 2918 | int right_blossom = _blossom_set->find(_graph.v(e)); |
| | 2919 | |
| | 2920 | if (left_blossom == right_blossom) { |
| | 2921 | _delta3->pop(); |
| | 2922 | } else { |
| | 2923 | int left_tree = _tree_set->find(left_blossom); |
| | 2924 | int right_tree = _tree_set->find(right_blossom); |
| | 2925 | |
| | 2926 | if (left_tree == right_tree) { |
| | 2927 | shrinkOnArc(e, left_tree); |
| | 2928 | } else { |
| | 2929 | augmentOnArc(e); |
| | 2930 | unmatched -= 2; |
| | 2931 | } |
| | 2932 | } |
| | 2933 | } break; |
| | 2934 | case D4: |
| | 2935 | splitBlossom(_delta4->top()); |
| | 2936 | break; |
| | 2937 | } |
| | 2938 | } |
| | 2939 | extractMatching(); |
| | 2940 | return true; |
| | 2941 | } |
| | 2942 | |
| | 2943 | /// \brief Runs %MaxWeightedPerfectMatching algorithm. |
| | 2944 | /// |
| | 2945 | /// This method runs the %MaxWeightedPerfectMatching algorithm. |
| | 2946 | /// |
| | 2947 | /// \note mwm.run() is just a shortcut of the following code. |
| | 2948 | /// \code |
| | 2949 | /// mwm.init(); |
| | 2950 | /// mwm.start(); |
| | 2951 | /// \endcode |
| | 2952 | bool run() { |
| | 2953 | init(); |
| | 2954 | return start(); |
| | 2955 | } |
| | 2956 | |
| | 2957 | /// @} |
| | 2958 | |
| | 2959 | /// \name Primal solution |
| | 2960 | /// Functions for get the primal solution, ie. the matching. |
| | 2961 | |
| | 2962 | /// @{ |
| | 2963 | |
| | 2964 | /// \brief Returns the matching value. |
| | 2965 | /// |
| | 2966 | /// Returns the matching value. |
| | 2967 | Value matchingValue() const { |
| | 2968 | Value sum = 0; |
| | 2969 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 2970 | if ((*_matching)[n] != INVALID) { |
| | 2971 | sum += _weight[(*_matching)[n]]; |
| | 2972 | } |
| | 2973 | } |
| | 2974 | return sum /= 2; |
| | 2975 | } |
| | 2976 | |
| | 2977 | /// \brief Returns true when the arc is in the matching. |
| | 2978 | /// |
| | 2979 | /// Returns true when the arc is in the matching. |
| | 2980 | bool matching(const Edge& arc) const { |
| | 2981 | return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true); |
| | 2982 | } |
| | 2983 | |
| | 2984 | /// \brief Returns the incident matching arc. |
| | 2985 | /// |
| | 2986 | /// Returns the incident matching arc from given node. |
| | 2987 | Arc matching(const Node& node) const { |
| | 2988 | return (*_matching)[node]; |
| | 2989 | } |
| | 2990 | |
| | 2991 | /// \brief Returns the mate of the node. |
| | 2992 | /// |
| | 2993 | /// Returns the adjancent node in a mathcing arc. |
| | 2994 | Node mate(const Node& node) const { |
| | 2995 | return _graph.target((*_matching)[node]); |
| | 2996 | } |
| | 2997 | |
| | 2998 | /// @} |
| | 2999 | |
| | 3000 | /// \name Dual solution |
| | 3001 | /// Functions for get the dual solution. |
| | 3002 | |
| | 3003 | /// @{ |
| | 3004 | |
| | 3005 | /// \brief Returns the value of the dual solution. |
| | 3006 | /// |
| | 3007 | /// Returns the value of the dual solution. It should be equal to |
| | 3008 | /// the primal value scaled by \ref dualScale "dual scale". |
| | 3009 | Value dualValue() const { |
| | 3010 | Value sum = 0; |
| | 3011 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| | 3012 | sum += nodeValue(n); |
| | 3013 | } |
| | 3014 | for (int i = 0; i < blossomNum(); ++i) { |
| | 3015 | sum += blossomValue(i) * (blossomSize(i) / 2); |
| | 3016 | } |
| | 3017 | return sum; |
| | 3018 | } |
| | 3019 | |
| | 3020 | /// \brief Returns the value of the node. |
| | 3021 | /// |
| | 3022 | /// Returns the the value of the node. |
| | 3023 | Value nodeValue(const Node& n) const { |
| | 3024 | return (*_node_potential)[n]; |
| | 3025 | } |
| | 3026 | |
| | 3027 | /// \brief Returns the number of the blossoms in the basis. |
| | 3028 | /// |
| | 3029 | /// Returns the number of the blossoms in the basis. |
| | 3030 | /// \see BlossomIt |
| | 3031 | int blossomNum() const { |
| | 3032 | return _blossom_potential.size(); |
| | 3033 | } |
| | 3034 | |
| | 3035 | |
| | 3036 | /// \brief Returns the number of the nodes in the blossom. |
| | 3037 | /// |
| | 3038 | /// Returns the number of the nodes in the blossom. |
| | 3039 | int blossomSize(int k) const { |
| | 3040 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
| | 3041 | } |
| | 3042 | |
| | 3043 | /// \brief Returns the value of the blossom. |
| | 3044 | /// |
| | 3045 | /// Returns the the value of the blossom. |
| | 3046 | /// \see BlossomIt |
| | 3047 | Value blossomValue(int k) const { |
| | 3048 | return _blossom_potential[k].value; |
| | 3049 | } |
| | 3050 | |
| | 3051 | /// \brief Lemon iterator for get the items of the blossom. |
| | 3052 | /// |
| | 3053 | /// Lemon iterator for get the nodes of the blossom. This class |
| | 3054 | /// provides a common style lemon iterator which gives back a |
| | 3055 | /// subset of the nodes. |
| | 3056 | class BlossomIt { |
| | 3057 | public: |
| | 3058 | |
| | 3059 | /// \brief Constructor. |
| | 3060 | /// |
| | 3061 | /// Constructor for get the nodes of the variable. |
| | 3062 | BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
| | 3063 | : _algorithm(&algorithm) |
| | 3064 | { |
| | 3065 | _index = _algorithm->_blossom_potential[variable].begin; |
| | 3066 | _last = _algorithm->_blossom_potential[variable].end; |
| | 3067 | } |
| | 3068 | |
| | 3069 | /// \brief Invalid constructor. |
| | 3070 | /// |
| | 3071 | /// Invalid constructor. |
| | 3072 | BlossomIt(Invalid) : _index(-1) {} |
| | 3073 | |
| | 3074 | /// \brief Conversion to node. |
| | 3075 | /// |
| | 3076 | /// Conversion to node. |
| | 3077 | operator Node() const { |
| | 3078 | return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID; |
| | 3079 | } |
| | 3080 | |
| | 3081 | /// \brief Increment operator. |
| | 3082 | /// |
| | 3083 | /// Increment operator. |
| | 3084 | BlossomIt& operator++() { |
| | 3085 | ++_index; |
| | 3086 | if (_index == _last) { |
| | 3087 | _index = -1; |
| | 3088 | } |
| | 3089 | return *this; |
| | 3090 | } |
| | 3091 | |
| | 3092 | bool operator==(const BlossomIt& it) const { |
| | 3093 | return _index == it._index; |
| | 3094 | } |
| | 3095 | bool operator!=(const BlossomIt& it) const { |
| | 3096 | return _index != it._index; |
| | 3097 | } |
| | 3098 | |
| | 3099 | private: |
| | 3100 | const MaxWeightedPerfectMatching* _algorithm; |
| | 3101 | int _last; |
| | 3102 | int _index; |
| | 3103 | }; |
| | 3104 | |
| | 3105 | /// @} |
| | 3106 | |
| | 3107 | }; |
| | 3108 | |
| | 3109 | |
| | 3110 | } //END OF NAMESPACE LEMON |
| | 3111 | |
| | 3112 | #endif //LEMON_MAX_MATCHING_H |