| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2008 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_MAX_MATCHING_H |
| 20 | #define LEMON_MAX_MATCHING_H |
| 21 | |
| 22 | #include <vector> |
| 23 | #include <queue> |
| 24 | #include <set> |
| 25 | #include <limits> |
| 26 | |
| 27 | #include <lemon/core.h> |
| 28 | #include <lemon/unionfind.h> |
| 29 | #include <lemon/bin_heap.h> |
| 30 | #include <lemon/maps.h> |
| 31 | |
| 32 | ///\ingroup matching |
| 33 | ///\file |
| 34 | ///\brief Maximum matching algorithms in general graphs. |
| 35 | |
| 36 | namespace lemon { |
| 37 | |
| 38 | /// \ingroup matching |
| 39 | /// |
| 40 | /// \brief Edmonds' alternating forest maximum matching algorithm. |
| 41 | /// |
| 42 | /// This class provides Edmonds' alternating forest matching |
| 43 | /// algorithm. The starting matching (if any) can be passed to the |
| 44 | /// algorithm using some of init functions. |
| 45 | /// |
| 46 | /// The dual side of a matching is a map of the nodes to |
| 47 | /// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c |
| 48 | /// MATCHED/C showing the Gallai-Edmonds decomposition of the |
| 49 | /// graph. The nodes in \c EVEN/D induce a graph with |
| 50 | /// factor-critical components, the nodes in \c ODD/A form the |
| 51 | /// barrier, and the nodes in \c MATCHED/C induce a graph having a |
| 52 | /// perfect matching. The number of the fractor critical components |
| 53 | /// minus the number of barrier nodes is a lower bound on the |
| 54 | /// unmatched nodes, and if the matching is optimal this bound is |
| 55 | /// tight. This decomposition can be attained by calling \c |
| 56 | /// decomposition() after running the algorithm. |
| 57 | /// |
| 58 | /// \param _Graph The graph type the algorithm runs on. |
| 59 | template <typename _Graph> |
| 60 | class MaxMatching { |
| 61 | public: |
| 62 | |
| 63 | typedef _Graph Graph; |
| 64 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 65 | MatchingMap; |
| 66 | |
| 67 | ///\brief Indicates the Gallai-Edmonds decomposition of the graph. |
| 68 | /// |
| 69 | ///Indicates the Gallai-Edmonds decomposition of the graph, which |
| 70 | ///shows an upper bound on the size of a maximum matching. The |
| 71 | ///nodes with Status \c EVEN/D induce a graph with factor-critical |
| 72 | ///components, the nodes in \c ODD/A form the canonical barrier, |
| 73 | ///and the nodes in \c MATCHED/C induce a graph having a perfect |
| 74 | ///matching. |
| 75 | enum Status { |
| 76 | EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2 |
| 77 | }; |
| 78 | |
| 79 | typedef typename Graph::template NodeMap<Status> StatusMap; |
| 80 | |
| 81 | private: |
| 82 | |
| 83 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 84 | |
| 85 | typedef UnionFindEnum<IntNodeMap> BlossomSet; |
| 86 | typedef ExtendFindEnum<IntNodeMap> TreeSet; |
| 87 | typedef RangeMap<Node> NodeIntMap; |
| 88 | typedef MatchingMap EarMap; |
| 89 | typedef std::vector<Node> NodeQueue; |
| 90 | |
| 91 | const Graph& _graph; |
| 92 | MatchingMap* _matching; |
| 93 | StatusMap* _status; |
| 94 | |
| 95 | EarMap* _ear; |
| 96 | |
| 97 | IntNodeMap* _blossom_set_index; |
| 98 | BlossomSet* _blossom_set; |
| 99 | NodeIntMap* _blossom_rep; |
| 100 | |
| 101 | IntNodeMap* _tree_set_index; |
| 102 | TreeSet* _tree_set; |
| 103 | |
| 104 | NodeQueue _node_queue; |
| 105 | int _process, _postpone, _last; |
| 106 | |
| 107 | int _node_num; |
| 108 | |
| 109 | private: |
| 110 | |
| 111 | void createStructures() { |
| 112 | _node_num = countNodes(_graph); |
| 113 | if (!_matching) { |
| 114 | _matching = new MatchingMap(_graph); |
| 115 | } |
| 116 | if (!_status) { |
| 117 | _status = new StatusMap(_graph); |
| 118 | } |
| 119 | if (!_ear) { |
| 120 | _ear = new EarMap(_graph); |
| 121 | } |
| 122 | if (!_blossom_set) { |
| 123 | _blossom_set_index = new IntNodeMap(_graph); |
| 124 | _blossom_set = new BlossomSet(*_blossom_set_index); |
| 125 | } |
| 126 | if (!_blossom_rep) { |
| 127 | _blossom_rep = new NodeIntMap(_node_num); |
| 128 | } |
| 129 | if (!_tree_set) { |
| 130 | _tree_set_index = new IntNodeMap(_graph); |
| 131 | _tree_set = new TreeSet(*_tree_set_index); |
| 132 | } |
| 133 | _node_queue.resize(_node_num); |
| 134 | } |
| 135 | |
| 136 | void destroyStructures() { |
| 137 | if (_matching) { |
| 138 | delete _matching; |
| 139 | } |
| 140 | if (_status) { |
| 141 | delete _status; |
| 142 | } |
| 143 | if (_ear) { |
| 144 | delete _ear; |
| 145 | } |
| 146 | if (_blossom_set) { |
| 147 | delete _blossom_set; |
| 148 | delete _blossom_set_index; |
| 149 | } |
| 150 | if (_blossom_rep) { |
| 151 | delete _blossom_rep; |
| 152 | } |
| 153 | if (_tree_set) { |
| 154 | delete _tree_set_index; |
| 155 | delete _tree_set; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | void processDense(const Node& n) { |
| 160 | _process = _postpone = _last = 0; |
| 161 | _node_queue[_last++] = n; |
| 162 | |
| 163 | while (_process != _last) { |
| 164 | Node u = _node_queue[_process++]; |
| 165 | for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
| 166 | Node v = _graph.target(a); |
| 167 | if ((*_status)[v] == MATCHED) { |
| 168 | extendOnArc(a); |
| 169 | } else if ((*_status)[v] == UNMATCHED) { |
| 170 | augmentOnArc(a); |
| 171 | return; |
| 172 | } |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | while (_postpone != _last) { |
| 177 | Node u = _node_queue[_postpone++]; |
| 178 | |
| 179 | for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
| 180 | Node v = _graph.target(a); |
| 181 | |
| 182 | if ((*_status)[v] == EVEN) { |
| 183 | if (_blossom_set->find(u) != _blossom_set->find(v)) { |
| 184 | shrinkOnEdge(a); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | while (_process != _last) { |
| 189 | Node w = _node_queue[_process++]; |
| 190 | for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
| 191 | Node x = _graph.target(b); |
| 192 | if ((*_status)[x] == MATCHED) { |
| 193 | extendOnArc(b); |
| 194 | } else if ((*_status)[x] == UNMATCHED) { |
| 195 | augmentOnArc(b); |
| 196 | return; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | void processSparse(const Node& n) { |
| 205 | _process = _last = 0; |
| 206 | _node_queue[_last++] = n; |
| 207 | while (_process != _last) { |
| 208 | Node u = _node_queue[_process++]; |
| 209 | for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
| 210 | Node v = _graph.target(a); |
| 211 | |
| 212 | if ((*_status)[v] == EVEN) { |
| 213 | if (_blossom_set->find(u) != _blossom_set->find(v)) { |
| 214 | shrinkOnEdge(a); |
| 215 | } |
| 216 | } else if ((*_status)[v] == MATCHED) { |
| 217 | extendOnArc(a); |
| 218 | } else if ((*_status)[v] == UNMATCHED) { |
| 219 | augmentOnArc(a); |
| 220 | return; |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | void shrinkOnEdge(const Edge& e) { |
| 227 | Node nca = INVALID; |
| 228 | |
| 229 | { |
| 230 | std::set<Node> left_set, right_set; |
| 231 | |
| 232 | Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
| 233 | left_set.insert(left); |
| 234 | |
| 235 | Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
| 236 | right_set.insert(right); |
| 237 | |
| 238 | while (true) { |
| 239 | if ((*_matching)[left] == INVALID) break; |
| 240 | left = _graph.target((*_matching)[left]); |
| 241 | left = (*_blossom_rep)[_blossom_set-> |
| 242 | find(_graph.target((*_ear)[left]))]; |
| 243 | if (right_set.find(left) != right_set.end()) { |
| 244 | nca = left; |
| 245 | break; |
| 246 | } |
| 247 | left_set.insert(left); |
| 248 | |
| 249 | if ((*_matching)[right] == INVALID) break; |
| 250 | right = _graph.target((*_matching)[right]); |
| 251 | right = (*_blossom_rep)[_blossom_set-> |
| 252 | find(_graph.target((*_ear)[right]))]; |
| 253 | if (left_set.find(right) != left_set.end()) { |
| 254 | nca = right; |
| 255 | break; |
| 256 | } |
| 257 | right_set.insert(right); |
| 258 | } |
| 259 | |
| 260 | if (nca == INVALID) { |
| 261 | if ((*_matching)[left] == INVALID) { |
| 262 | nca = right; |
| 263 | while (left_set.find(nca) == left_set.end()) { |
| 264 | nca = _graph.target((*_matching)[nca]); |
| 265 | nca =(*_blossom_rep)[_blossom_set-> |
| 266 | find(_graph.target((*_ear)[nca]))]; |
| 267 | } |
| 268 | } else { |
| 269 | nca = left; |
| 270 | while (right_set.find(nca) == right_set.end()) { |
| 271 | nca = _graph.target((*_matching)[nca]); |
| 272 | nca = (*_blossom_rep)[_blossom_set-> |
| 273 | find(_graph.target((*_ear)[nca]))]; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | { |
| 280 | |
| 281 | Node node = _graph.u(e); |
| 282 | Arc arc = _graph.direct(e, true); |
| 283 | Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 284 | |
| 285 | while (base != nca) { |
| 286 | _ear->set(node, arc); |
| 287 | |
| 288 | Node n = node; |
| 289 | while (n != base) { |
| 290 | n = _graph.target((*_matching)[n]); |
| 291 | Arc a = (*_ear)[n]; |
| 292 | n = _graph.target(a); |
| 293 | _ear->set(n, _graph.oppositeArc(a)); |
| 294 | } |
| 295 | node = _graph.target((*_matching)[base]); |
| 296 | _tree_set->erase(base); |
| 297 | _tree_set->erase(node); |
| 298 | _blossom_set->insert(node, _blossom_set->find(base)); |
| 299 | _status->set(node, EVEN); |
| 300 | _node_queue[_last++] = node; |
| 301 | arc = _graph.oppositeArc((*_ear)[node]); |
| 302 | node = _graph.target((*_ear)[node]); |
| 303 | base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 304 | _blossom_set->join(_graph.target(arc), base); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | _blossom_rep->set(_blossom_set->find(nca), nca); |
| 309 | |
| 310 | { |
| 311 | |
| 312 | Node node = _graph.v(e); |
| 313 | Arc arc = _graph.direct(e, false); |
| 314 | Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 315 | |
| 316 | while (base != nca) { |
| 317 | _ear->set(node, arc); |
| 318 | |
| 319 | Node n = node; |
| 320 | while (n != base) { |
| 321 | n = _graph.target((*_matching)[n]); |
| 322 | Arc a = (*_ear)[n]; |
| 323 | n = _graph.target(a); |
| 324 | _ear->set(n, _graph.oppositeArc(a)); |
| 325 | } |
| 326 | node = _graph.target((*_matching)[base]); |
| 327 | _tree_set->erase(base); |
| 328 | _tree_set->erase(node); |
| 329 | _blossom_set->insert(node, _blossom_set->find(base)); |
| 330 | _status->set(node, EVEN); |
| 331 | _node_queue[_last++] = node; |
| 332 | arc = _graph.oppositeArc((*_ear)[node]); |
| 333 | node = _graph.target((*_ear)[node]); |
| 334 | base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 335 | _blossom_set->join(_graph.target(arc), base); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | _blossom_rep->set(_blossom_set->find(nca), nca); |
| 340 | } |
| 341 | |
| 342 | |
| 343 | |
| 344 | void extendOnArc(const Arc& a) { |
| 345 | Node base = _graph.source(a); |
| 346 | Node odd = _graph.target(a); |
| 347 | |
| 348 | _ear->set(odd, _graph.oppositeArc(a)); |
| 349 | Node even = _graph.target((*_matching)[odd]); |
| 350 | _blossom_rep->set(_blossom_set->insert(even), even); |
| 351 | _status->set(odd, ODD); |
| 352 | _status->set(even, EVEN); |
| 353 | int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
| 354 | _tree_set->insert(odd, tree); |
| 355 | _tree_set->insert(even, tree); |
| 356 | _node_queue[_last++] = even; |
| 357 | |
| 358 | } |
| 359 | |
| 360 | void augmentOnArc(const Arc& a) { |
| 361 | Node even = _graph.source(a); |
| 362 | Node odd = _graph.target(a); |
| 363 | |
| 364 | int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
| 365 | |
| 366 | _matching->set(odd, _graph.oppositeArc(a)); |
| 367 | _status->set(odd, MATCHED); |
| 368 | |
| 369 | Arc arc = (*_matching)[even]; |
| 370 | _matching->set(even, a); |
| 371 | |
| 372 | while (arc != INVALID) { |
| 373 | odd = _graph.target(arc); |
| 374 | arc = (*_ear)[odd]; |
| 375 | even = _graph.target(arc); |
| 376 | _matching->set(odd, arc); |
| 377 | arc = (*_matching)[even]; |
| 378 | _matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
| 379 | } |
| 380 | |
| 381 | for (typename TreeSet::ItemIt it(*_tree_set, tree); |
| 382 | it != INVALID; ++it) { |
| 383 | if ((*_status)[it] == ODD) { |
| 384 | _status->set(it, MATCHED); |
| 385 | } else { |
| 386 | int blossom = _blossom_set->find(it); |
| 387 | for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
| 388 | jt != INVALID; ++jt) { |
| 389 | _status->set(jt, MATCHED); |
| 390 | } |
| 391 | _blossom_set->eraseClass(blossom); |
| 392 | } |
| 393 | } |
| 394 | _tree_set->eraseClass(tree); |
| 395 | |
| 396 | } |
| 397 | |
| 398 | public: |
| 399 | |
| 400 | /// \brief Constructor |
| 401 | /// |
| 402 | /// Constructor. |
| 403 | MaxMatching(const Graph& graph) |
| 404 | : _graph(graph), _matching(0), _status(0), _ear(0), |
| 405 | _blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
| 406 | _tree_set_index(0), _tree_set(0) {} |
| 407 | |
| 408 | ~MaxMatching() { |
| 409 | destroyStructures(); |
| 410 | } |
| 411 | |
| 412 | /// \name Execution control |
| 413 | /// The simplest way to execute the algorithm is to use the member |
| 414 | /// \c run() member function. |
| 415 | /// \n |
| 416 | |
| 417 | /// If you need more control on the execution, first you must call |
| 418 | /// \ref init(), \ref greedyInit() or \ref matchingInit() |
| 419 | /// functions, then you can start the algorithm with the \ref |
| 420 | /// startParse() or startDense() functions. |
| 421 | |
| 422 | ///@{ |
| 423 | |
| 424 | /// \brief Sets the actual matching to the empty matching. |
| 425 | /// |
| 426 | /// Sets the actual matching to the empty matching. |
| 427 | /// |
| 428 | void init() { |
| 429 | createStructures(); |
| 430 | for(NodeIt n(_graph); n != INVALID; ++n) { |
| 431 | _matching->set(n, INVALID); |
| 432 | _status->set(n, UNMATCHED); |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | ///\brief Finds a greedy matching for initial matching. |
| 437 | /// |
| 438 | ///For initial matchig it finds a maximal greedy matching. |
| 439 | void greedyInit() { |
| 440 | createStructures(); |
| 441 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 442 | _matching->set(n, INVALID); |
| 443 | _status->set(n, UNMATCHED); |
| 444 | } |
| 445 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 446 | if ((*_matching)[n] == INVALID) { |
| 447 | for (OutArcIt a(_graph, n); a != INVALID ; ++a) { |
| 448 | Node v = _graph.target(a); |
| 449 | if ((*_matching)[v] == INVALID && v != n) { |
| 450 | _matching->set(n, a); |
| 451 | _status->set(n, MATCHED); |
| 452 | _matching->set(v, _graph.oppositeArc(a)); |
| 453 | _status->set(v, MATCHED); |
| 454 | break; |
| 455 | } |
| 456 | } |
| 457 | } |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | |
| 462 | /// \brief Initialize the matching from the map containing a matching. |
| 463 | /// |
| 464 | /// Initialize the matching from a \c bool valued \c Edge map. This |
| 465 | /// map must have the property that there are no two incident edges |
| 466 | /// with true value, ie. it contains a matching. |
| 467 | /// \return %True if the map contains a matching. |
| 468 | template <typename MatchingMap> |
| 469 | bool matchingInit(const MatchingMap& matching) { |
| 470 | createStructures(); |
| 471 | |
| 472 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 473 | _matching->set(n, INVALID); |
| 474 | _status->set(n, UNMATCHED); |
| 475 | } |
| 476 | for(EdgeIt e(_graph); e!=INVALID; ++e) { |
| 477 | if (matching[e]) { |
| 478 | |
| 479 | Node u = _graph.u(e); |
| 480 | if ((*_matching)[u] != INVALID) return false; |
| 481 | _matching->set(u, _graph.direct(e, true)); |
| 482 | _status->set(u, MATCHED); |
| 483 | |
| 484 | Node v = _graph.v(e); |
| 485 | if ((*_matching)[v] != INVALID) return false; |
| 486 | _matching->set(v, _graph.direct(e, false)); |
| 487 | _status->set(v, MATCHED); |
| 488 | } |
| 489 | } |
| 490 | return true; |
| 491 | } |
| 492 | |
| 493 | /// \brief Starts Edmonds' algorithm |
| 494 | /// |
| 495 | /// If runs the original Edmonds' algorithm. |
| 496 | void startSparse() { |
| 497 | for(NodeIt n(_graph); n != INVALID; ++n) { |
| 498 | if ((*_status)[n] == UNMATCHED) { |
| 499 | (*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 500 | _tree_set->insert(n); |
| 501 | _status->set(n, EVEN); |
| 502 | processSparse(n); |
| 503 | } |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | /// \brief Starts Edmonds' algorithm. |
| 508 | /// |
| 509 | /// It runs Edmonds' algorithm with a heuristic of postponing |
| 510 | /// shrinks, giving a faster algorithm for dense graphs. |
| 511 | void startDense() { |
| 512 | for(NodeIt n(_graph); n != INVALID; ++n) { |
| 513 | if ((*_status)[n] == UNMATCHED) { |
| 514 | (*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 515 | _tree_set->insert(n); |
| 516 | _status->set(n, EVEN); |
| 517 | processDense(n); |
| 518 | } |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | |
| 523 | /// \brief Runs Edmonds' algorithm |
| 524 | /// |
| 525 | /// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>) |
| 526 | /// or Edmonds' algorithm with a heuristic of |
| 527 | /// postponing shrinks for dense graphs. |
| 528 | void run() { |
| 529 | if (countEdges(_graph) < 2 * countNodes(_graph)) { |
| 530 | greedyInit(); |
| 531 | startSparse(); |
| 532 | } else { |
| 533 | init(); |
| 534 | startDense(); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | /// @} |
| 539 | |
| 540 | /// \name Primal solution |
| 541 | /// Functions for get the primal solution, ie. the matching. |
| 542 | |
| 543 | /// @{ |
| 544 | |
| 545 | ///\brief Returns the size of the actual matching stored. |
| 546 | /// |
| 547 | ///Returns the size of the actual matching stored. After \ref |
| 548 | ///run() it returns the size of the maximum matching in the graph. |
| 549 | int matchingSize() const { |
| 550 | int size = 0; |
| 551 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 552 | if ((*_matching)[n] != INVALID) { |
| 553 | ++size; |
| 554 | } |
| 555 | } |
| 556 | return size / 2; |
| 557 | } |
| 558 | |
| 559 | /// \brief Returns true when the edge is in the matching. |
| 560 | /// |
| 561 | /// Returns true when the edge is in the matching. |
| 562 | bool matching(const Edge& edge) const { |
| 563 | return edge == (*_matching)[_graph.u(edge)]; |
| 564 | } |
| 565 | |
| 566 | /// \brief Returns the matching edge incident to the given node. |
| 567 | /// |
| 568 | /// Returns the matching edge of a \c node in the actual matching or |
| 569 | /// INVALID if the \c node is not covered by the actual matching. |
| 570 | Arc matching(const Node& n) const { |
| 571 | return (*_matching)[n]; |
| 572 | } |
| 573 | |
| 574 | ///\brief Returns the mate of a node in the actual matching. |
| 575 | /// |
| 576 | ///Returns the mate of a \c node in the actual matching or |
| 577 | ///INVALID if the \c node is not covered by the actual matching. |
| 578 | Node mate(const Node& n) const { |
| 579 | return (*_matching)[n] != INVALID ? |
| 580 | _graph.target((*_matching)[n]) : INVALID; |
| 581 | } |
| 582 | |
| 583 | /// @} |
| 584 | |
| 585 | /// \name Dual solution |
| 586 | /// Functions for get the dual solution, ie. the decomposition. |
| 587 | |
| 588 | /// @{ |
| 589 | |
| 590 | /// \brief Returns the class of the node in the Edmonds-Gallai |
| 591 | /// decomposition. |
| 592 | /// |
| 593 | /// Returns the class of the node in the Edmonds-Gallai |
| 594 | /// decomposition. |
| 595 | Status decomposition(const Node& n) const { |
| 596 | return (*_status)[n]; |
| 597 | } |
| 598 | |
| 599 | /// \brief Returns true when the node is in the barrier. |
| 600 | /// |
| 601 | /// Returns true when the node is in the barrier. |
| 602 | bool barrier(const Node& n) const { |
| 603 | return (*_status)[n] == ODD; |
| 604 | } |
| 605 | |
| 606 | /// @} |
| 607 | |
| 608 | }; |
| 609 | |
| 610 | /// \ingroup matching |
| 611 | /// |
| 612 | /// \brief Weighted matching in general graphs |
| 613 | /// |
| 614 | /// This class provides an efficient implementation of Edmond's |
| 615 | /// maximum weighted matching algorithm. The implementation is based |
| 616 | /// on extensive use of priority queues and provides |
| 617 | /// \f$O(nm\log(n))\f$ time complexity. |
| 618 | /// |
| 619 | /// The maximum weighted matching problem is to find undirected |
| 620 | /// edges in the graph with maximum overall weight and no two of |
| 621 | /// them shares their ends. The problem can be formulated with the |
| 622 | /// following linear program. |
| 623 | /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
| 624 | /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
| 625 | \quad \forall B\in\mathcal{O}\f] */ |
| 626 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
| 627 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| 628 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 629 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 630 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
| 631 | /// subsets of the nodes. |
| 632 | /// |
| 633 | /// The algorithm calculates an optimal matching and a proof of the |
| 634 | /// optimality. The solution of the dual problem can be used to check |
| 635 | /// the result of the algorithm. The dual linear problem is the |
| 636 | /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
| 637 | z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
| 638 | /// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 639 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
| 640 | /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
| 641 | \frac{\vert B \vert - 1}{2}z_B\f] */ |
| 642 | /// |
| 643 | /// The algorithm can be executed with \c run() or the \c init() and |
| 644 | /// then the \c start() member functions. After it the matching can |
| 645 | /// be asked with \c matching() or mate() functions. The dual |
| 646 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
| 647 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
| 648 | /// "BlossomIt" nested class which is able to iterate on the nodes |
| 649 | /// of a blossom. If the value type is integral then the dual |
| 650 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
| 651 | template <typename _Graph, |
| 652 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
| 653 | class MaxWeightedMatching { |
| 654 | public: |
| 655 | |
| 656 | typedef _Graph Graph; |
| 657 | typedef _WeightMap WeightMap; |
| 658 | typedef typename WeightMap::Value Value; |
| 659 | |
| 660 | /// \brief Scaling factor for dual solution |
| 661 | /// |
| 662 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
| 663 | /// according to the value type. |
| 664 | static const int dualScale = |
| 665 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 666 | |
| 667 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 668 | MatchingMap; |
| 669 | |
| 670 | private: |
| 671 | |
| 672 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 673 | |
| 674 | typedef typename Graph::template NodeMap<Value> NodePotential; |
| 675 | typedef std::vector<Node> BlossomNodeList; |
| 676 | |
| 677 | struct BlossomVariable { |
| 678 | int begin, end; |
| 679 | Value value; |
| 680 | |
| 681 | BlossomVariable(int _begin, int _end, Value _value) |
| 682 | : begin(_begin), end(_end), value(_value) {} |
| 683 | |
| 684 | }; |
| 685 | |
| 686 | typedef std::vector<BlossomVariable> BlossomPotential; |
| 687 | |
| 688 | const Graph& _graph; |
| 689 | const WeightMap& _weight; |
| 690 | |
| 691 | MatchingMap* _matching; |
| 692 | |
| 693 | NodePotential* _node_potential; |
| 694 | |
| 695 | BlossomPotential _blossom_potential; |
| 696 | BlossomNodeList _blossom_node_list; |
| 697 | |
| 698 | int _node_num; |
| 699 | int _blossom_num; |
| 700 | |
| 701 | typedef RangeMap<int> IntIntMap; |
| 702 | |
| 703 | enum Status { |
| 704 | EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
| 705 | }; |
| 706 | |
| 707 | typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 708 | struct BlossomData { |
| 709 | int tree; |
| 710 | Status status; |
| 711 | Arc pred, next; |
| 712 | Value pot, offset; |
| 713 | Node base; |
| 714 | }; |
| 715 | |
| 716 | IntNodeMap *_blossom_index; |
| 717 | BlossomSet *_blossom_set; |
| 718 | RangeMap<BlossomData>* _blossom_data; |
| 719 | |
| 720 | IntNodeMap *_node_index; |
| 721 | IntArcMap *_node_heap_index; |
| 722 | |
| 723 | struct NodeData { |
| 724 | |
| 725 | NodeData(IntArcMap& node_heap_index) |
| 726 | : heap(node_heap_index) {} |
| 727 | |
| 728 | int blossom; |
| 729 | Value pot; |
| 730 | BinHeap<Value, IntArcMap> heap; |
| 731 | std::map<int, Arc> heap_index; |
| 732 | |
| 733 | int tree; |
| 734 | }; |
| 735 | |
| 736 | RangeMap<NodeData>* _node_data; |
| 737 | |
| 738 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 739 | |
| 740 | IntIntMap *_tree_set_index; |
| 741 | TreeSet *_tree_set; |
| 742 | |
| 743 | IntNodeMap *_delta1_index; |
| 744 | BinHeap<Value, IntNodeMap> *_delta1; |
| 745 | |
| 746 | IntIntMap *_delta2_index; |
| 747 | BinHeap<Value, IntIntMap> *_delta2; |
| 748 | |
| 749 | IntEdgeMap *_delta3_index; |
| 750 | BinHeap<Value, IntEdgeMap> *_delta3; |
| 751 | |
| 752 | IntIntMap *_delta4_index; |
| 753 | BinHeap<Value, IntIntMap> *_delta4; |
| 754 | |
| 755 | Value _delta_sum; |
| 756 | |
| 757 | void createStructures() { |
| 758 | _node_num = countNodes(_graph); |
| 759 | _blossom_num = _node_num * 3 / 2; |
| 760 | |
| 761 | if (!_matching) { |
| 762 | _matching = new MatchingMap(_graph); |
| 763 | } |
| 764 | if (!_node_potential) { |
| 765 | _node_potential = new NodePotential(_graph); |
| 766 | } |
| 767 | if (!_blossom_set) { |
| 768 | _blossom_index = new IntNodeMap(_graph); |
| 769 | _blossom_set = new BlossomSet(*_blossom_index); |
| 770 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 771 | } |
| 772 | |
| 773 | if (!_node_index) { |
| 774 | _node_index = new IntNodeMap(_graph); |
| 775 | _node_heap_index = new IntArcMap(_graph); |
| 776 | _node_data = new RangeMap<NodeData>(_node_num, |
| 777 | NodeData(*_node_heap_index)); |
| 778 | } |
| 779 | |
| 780 | if (!_tree_set) { |
| 781 | _tree_set_index = new IntIntMap(_blossom_num); |
| 782 | _tree_set = new TreeSet(*_tree_set_index); |
| 783 | } |
| 784 | if (!_delta1) { |
| 785 | _delta1_index = new IntNodeMap(_graph); |
| 786 | _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| 787 | } |
| 788 | if (!_delta2) { |
| 789 | _delta2_index = new IntIntMap(_blossom_num); |
| 790 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 791 | } |
| 792 | if (!_delta3) { |
| 793 | _delta3_index = new IntEdgeMap(_graph); |
| 794 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 795 | } |
| 796 | if (!_delta4) { |
| 797 | _delta4_index = new IntIntMap(_blossom_num); |
| 798 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | void destroyStructures() { |
| 803 | _node_num = countNodes(_graph); |
| 804 | _blossom_num = _node_num * 3 / 2; |
| 805 | |
| 806 | if (_matching) { |
| 807 | delete _matching; |
| 808 | } |
| 809 | if (_node_potential) { |
| 810 | delete _node_potential; |
| 811 | } |
| 812 | if (_blossom_set) { |
| 813 | delete _blossom_index; |
| 814 | delete _blossom_set; |
| 815 | delete _blossom_data; |
| 816 | } |
| 817 | |
| 818 | if (_node_index) { |
| 819 | delete _node_index; |
| 820 | delete _node_heap_index; |
| 821 | delete _node_data; |
| 822 | } |
| 823 | |
| 824 | if (_tree_set) { |
| 825 | delete _tree_set_index; |
| 826 | delete _tree_set; |
| 827 | } |
| 828 | if (_delta1) { |
| 829 | delete _delta1_index; |
| 830 | delete _delta1; |
| 831 | } |
| 832 | if (_delta2) { |
| 833 | delete _delta2_index; |
| 834 | delete _delta2; |
| 835 | } |
| 836 | if (_delta3) { |
| 837 | delete _delta3_index; |
| 838 | delete _delta3; |
| 839 | } |
| 840 | if (_delta4) { |
| 841 | delete _delta4_index; |
| 842 | delete _delta4; |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | void matchedToEven(int blossom, int tree) { |
| 847 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 848 | _delta2->erase(blossom); |
| 849 | } |
| 850 | |
| 851 | if (!_blossom_set->trivial(blossom)) { |
| 852 | (*_blossom_data)[blossom].pot -= |
| 853 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| 854 | } |
| 855 | |
| 856 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 857 | n != INVALID; ++n) { |
| 858 | |
| 859 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 860 | int ni = (*_node_index)[n]; |
| 861 | |
| 862 | (*_node_data)[ni].heap.clear(); |
| 863 | (*_node_data)[ni].heap_index.clear(); |
| 864 | |
| 865 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 866 | |
| 867 | _delta1->push(n, (*_node_data)[ni].pot); |
| 868 | |
| 869 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 870 | Node v = _graph.source(e); |
| 871 | int vb = _blossom_set->find(v); |
| 872 | int vi = (*_node_index)[v]; |
| 873 | |
| 874 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 875 | dualScale * _weight[e]; |
| 876 | |
| 877 | if ((*_blossom_data)[vb].status == EVEN) { |
| 878 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| 879 | _delta3->push(e, rw / 2); |
| 880 | } |
| 881 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| 882 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
| 883 | _delta3->push(e, rw); |
| 884 | } |
| 885 | } else { |
| 886 | typename std::map<int, Arc>::iterator it = |
| 887 | (*_node_data)[vi].heap_index.find(tree); |
| 888 | |
| 889 | if (it != (*_node_data)[vi].heap_index.end()) { |
| 890 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| 891 | (*_node_data)[vi].heap.replace(it->second, e); |
| 892 | (*_node_data)[vi].heap.decrease(e, rw); |
| 893 | it->second = e; |
| 894 | } |
| 895 | } else { |
| 896 | (*_node_data)[vi].heap.push(e, rw); |
| 897 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 898 | } |
| 899 | |
| 900 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| 901 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 902 | |
| 903 | if ((*_blossom_data)[vb].status == MATCHED) { |
| 904 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| 905 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| 906 | (*_blossom_data)[vb].offset); |
| 907 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 908 | (*_blossom_data)[vb].offset){ |
| 909 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 910 | (*_blossom_data)[vb].offset); |
| 911 | } |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | } |
| 917 | (*_blossom_data)[blossom].offset = 0; |
| 918 | } |
| 919 | |
| 920 | void matchedToOdd(int blossom) { |
| 921 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 922 | _delta2->erase(blossom); |
| 923 | } |
| 924 | (*_blossom_data)[blossom].offset += _delta_sum; |
| 925 | if (!_blossom_set->trivial(blossom)) { |
| 926 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
| 927 | (*_blossom_data)[blossom].offset); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | void evenToMatched(int blossom, int tree) { |
| 932 | if (!_blossom_set->trivial(blossom)) { |
| 933 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
| 934 | } |
| 935 | |
| 936 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 937 | n != INVALID; ++n) { |
| 938 | int ni = (*_node_index)[n]; |
| 939 | (*_node_data)[ni].pot -= _delta_sum; |
| 940 | |
| 941 | _delta1->erase(n); |
| 942 | |
| 943 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 944 | Node v = _graph.source(e); |
| 945 | int vb = _blossom_set->find(v); |
| 946 | int vi = (*_node_index)[v]; |
| 947 | |
| 948 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 949 | dualScale * _weight[e]; |
| 950 | |
| 951 | if (vb == blossom) { |
| 952 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 953 | _delta3->erase(e); |
| 954 | } |
| 955 | } else if ((*_blossom_data)[vb].status == EVEN) { |
| 956 | |
| 957 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 958 | _delta3->erase(e); |
| 959 | } |
| 960 | |
| 961 | int vt = _tree_set->find(vb); |
| 962 | |
| 963 | if (vt != tree) { |
| 964 | |
| 965 | Arc r = _graph.oppositeArc(e); |
| 966 | |
| 967 | typename std::map<int, Arc>::iterator it = |
| 968 | (*_node_data)[ni].heap_index.find(vt); |
| 969 | |
| 970 | if (it != (*_node_data)[ni].heap_index.end()) { |
| 971 | if ((*_node_data)[ni].heap[it->second] > rw) { |
| 972 | (*_node_data)[ni].heap.replace(it->second, r); |
| 973 | (*_node_data)[ni].heap.decrease(r, rw); |
| 974 | it->second = r; |
| 975 | } |
| 976 | } else { |
| 977 | (*_node_data)[ni].heap.push(r, rw); |
| 978 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| 979 | } |
| 980 | |
| 981 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
| 982 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| 983 | |
| 984 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
| 985 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 986 | (*_blossom_data)[blossom].offset); |
| 987 | } else if ((*_delta2)[blossom] > |
| 988 | _blossom_set->classPrio(blossom) - |
| 989 | (*_blossom_data)[blossom].offset){ |
| 990 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| 991 | (*_blossom_data)[blossom].offset); |
| 992 | } |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| 997 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 998 | _delta3->erase(e); |
| 999 | } |
| 1000 | } else { |
| 1001 | |
| 1002 | typename std::map<int, Arc>::iterator it = |
| 1003 | (*_node_data)[vi].heap_index.find(tree); |
| 1004 | |
| 1005 | if (it != (*_node_data)[vi].heap_index.end()) { |
| 1006 | (*_node_data)[vi].heap.erase(it->second); |
| 1007 | (*_node_data)[vi].heap_index.erase(it); |
| 1008 | if ((*_node_data)[vi].heap.empty()) { |
| 1009 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
| 1010 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
| 1011 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
| 1012 | } |
| 1013 | |
| 1014 | if ((*_blossom_data)[vb].status == MATCHED) { |
| 1015 | if (_blossom_set->classPrio(vb) == |
| 1016 | std::numeric_limits<Value>::max()) { |
| 1017 | _delta2->erase(vb); |
| 1018 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
| 1019 | (*_blossom_data)[vb].offset) { |
| 1020 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
| 1021 | (*_blossom_data)[vb].offset); |
| 1022 | } |
| 1023 | } |
| 1024 | } |
| 1025 | } |
| 1026 | } |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | void oddToMatched(int blossom) { |
| 1031 | (*_blossom_data)[blossom].offset -= _delta_sum; |
| 1032 | |
| 1033 | if (_blossom_set->classPrio(blossom) != |
| 1034 | std::numeric_limits<Value>::max()) { |
| 1035 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 1036 | (*_blossom_data)[blossom].offset); |
| 1037 | } |
| 1038 | |
| 1039 | if (!_blossom_set->trivial(blossom)) { |
| 1040 | _delta4->erase(blossom); |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | void oddToEven(int blossom, int tree) { |
| 1045 | if (!_blossom_set->trivial(blossom)) { |
| 1046 | _delta4->erase(blossom); |
| 1047 | (*_blossom_data)[blossom].pot -= |
| 1048 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
| 1049 | } |
| 1050 | |
| 1051 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1052 | n != INVALID; ++n) { |
| 1053 | int ni = (*_node_index)[n]; |
| 1054 | |
| 1055 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 1056 | |
| 1057 | (*_node_data)[ni].heap.clear(); |
| 1058 | (*_node_data)[ni].heap_index.clear(); |
| 1059 | (*_node_data)[ni].pot += |
| 1060 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
| 1061 | |
| 1062 | _delta1->push(n, (*_node_data)[ni].pot); |
| 1063 | |
| 1064 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 1065 | Node v = _graph.source(e); |
| 1066 | int vb = _blossom_set->find(v); |
| 1067 | int vi = (*_node_index)[v]; |
| 1068 | |
| 1069 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1070 | dualScale * _weight[e]; |
| 1071 | |
| 1072 | if ((*_blossom_data)[vb].status == EVEN) { |
| 1073 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| 1074 | _delta3->push(e, rw / 2); |
| 1075 | } |
| 1076 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| 1077 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
| 1078 | _delta3->push(e, rw); |
| 1079 | } |
| 1080 | } else { |
| 1081 | |
| 1082 | typename std::map<int, Arc>::iterator it = |
| 1083 | (*_node_data)[vi].heap_index.find(tree); |
| 1084 | |
| 1085 | if (it != (*_node_data)[vi].heap_index.end()) { |
| 1086 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| 1087 | (*_node_data)[vi].heap.replace(it->second, e); |
| 1088 | (*_node_data)[vi].heap.decrease(e, rw); |
| 1089 | it->second = e; |
| 1090 | } |
| 1091 | } else { |
| 1092 | (*_node_data)[vi].heap.push(e, rw); |
| 1093 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 1094 | } |
| 1095 | |
| 1096 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| 1097 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 1098 | |
| 1099 | if ((*_blossom_data)[vb].status == MATCHED) { |
| 1100 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| 1101 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| 1102 | (*_blossom_data)[vb].offset); |
| 1103 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 1104 | (*_blossom_data)[vb].offset) { |
| 1105 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 1106 | (*_blossom_data)[vb].offset); |
| 1107 | } |
| 1108 | } |
| 1109 | } |
| 1110 | } |
| 1111 | } |
| 1112 | } |
| 1113 | (*_blossom_data)[blossom].offset = 0; |
| 1114 | } |
| 1115 | |
| 1116 | |
| 1117 | void matchedToUnmatched(int blossom) { |
| 1118 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 1119 | _delta2->erase(blossom); |
| 1120 | } |
| 1121 | |
| 1122 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1123 | n != INVALID; ++n) { |
| 1124 | int ni = (*_node_index)[n]; |
| 1125 | |
| 1126 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 1127 | |
| 1128 | (*_node_data)[ni].heap.clear(); |
| 1129 | (*_node_data)[ni].heap_index.clear(); |
| 1130 | |
| 1131 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| 1132 | Node v = _graph.target(e); |
| 1133 | int vb = _blossom_set->find(v); |
| 1134 | int vi = (*_node_index)[v]; |
| 1135 | |
| 1136 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1137 | dualScale * _weight[e]; |
| 1138 | |
| 1139 | if ((*_blossom_data)[vb].status == EVEN) { |
| 1140 | if (_delta3->state(e) != _delta3->IN_HEAP) { |
| 1141 | _delta3->push(e, rw); |
| 1142 | } |
| 1143 | } |
| 1144 | } |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | void unmatchedToMatched(int blossom) { |
| 1149 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1150 | n != INVALID; ++n) { |
| 1151 | int ni = (*_node_index)[n]; |
| 1152 | |
| 1153 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 1154 | Node v = _graph.source(e); |
| 1155 | int vb = _blossom_set->find(v); |
| 1156 | int vi = (*_node_index)[v]; |
| 1157 | |
| 1158 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1159 | dualScale * _weight[e]; |
| 1160 | |
| 1161 | if (vb == blossom) { |
| 1162 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 1163 | _delta3->erase(e); |
| 1164 | } |
| 1165 | } else if ((*_blossom_data)[vb].status == EVEN) { |
| 1166 | |
| 1167 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 1168 | _delta3->erase(e); |
| 1169 | } |
| 1170 | |
| 1171 | int vt = _tree_set->find(vb); |
| 1172 | |
| 1173 | Arc r = _graph.oppositeArc(e); |
| 1174 | |
| 1175 | typename std::map<int, Arc>::iterator it = |
| 1176 | (*_node_data)[ni].heap_index.find(vt); |
| 1177 | |
| 1178 | if (it != (*_node_data)[ni].heap_index.end()) { |
| 1179 | if ((*_node_data)[ni].heap[it->second] > rw) { |
| 1180 | (*_node_data)[ni].heap.replace(it->second, r); |
| 1181 | (*_node_data)[ni].heap.decrease(r, rw); |
| 1182 | it->second = r; |
| 1183 | } |
| 1184 | } else { |
| 1185 | (*_node_data)[ni].heap.push(r, rw); |
| 1186 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| 1187 | } |
| 1188 | |
| 1189 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
| 1190 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| 1191 | |
| 1192 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
| 1193 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 1194 | (*_blossom_data)[blossom].offset); |
| 1195 | } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
| 1196 | (*_blossom_data)[blossom].offset){ |
| 1197 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| 1198 | (*_blossom_data)[blossom].offset); |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | } else if ((*_blossom_data)[vb].status == UNMATCHED) { |
| 1203 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 1204 | _delta3->erase(e); |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | void alternatePath(int even, int tree) { |
| 1212 | int odd; |
| 1213 | |
| 1214 | evenToMatched(even, tree); |
| 1215 | (*_blossom_data)[even].status = MATCHED; |
| 1216 | |
| 1217 | while ((*_blossom_data)[even].pred != INVALID) { |
| 1218 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
| 1219 | (*_blossom_data)[odd].status = MATCHED; |
| 1220 | oddToMatched(odd); |
| 1221 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
| 1222 | |
| 1223 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
| 1224 | (*_blossom_data)[even].status = MATCHED; |
| 1225 | evenToMatched(even, tree); |
| 1226 | (*_blossom_data)[even].next = |
| 1227 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
| 1228 | } |
| 1229 | |
| 1230 | } |
| 1231 | |
| 1232 | void destroyTree(int tree) { |
| 1233 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
| 1234 | if ((*_blossom_data)[b].status == EVEN) { |
| 1235 | (*_blossom_data)[b].status = MATCHED; |
| 1236 | evenToMatched(b, tree); |
| 1237 | } else if ((*_blossom_data)[b].status == ODD) { |
| 1238 | (*_blossom_data)[b].status = MATCHED; |
| 1239 | oddToMatched(b); |
| 1240 | } |
| 1241 | } |
| 1242 | _tree_set->eraseClass(tree); |
| 1243 | } |
| 1244 | |
| 1245 | |
| 1246 | void unmatchNode(const Node& node) { |
| 1247 | int blossom = _blossom_set->find(node); |
| 1248 | int tree = _tree_set->find(blossom); |
| 1249 | |
| 1250 | alternatePath(blossom, tree); |
| 1251 | destroyTree(tree); |
| 1252 | |
| 1253 | (*_blossom_data)[blossom].status = UNMATCHED; |
| 1254 | (*_blossom_data)[blossom].base = node; |
| 1255 | matchedToUnmatched(blossom); |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | void augmentOnEdge(const Edge& edge) { |
| 1260 | |
| 1261 | int left = _blossom_set->find(_graph.u(edge)); |
| 1262 | int right = _blossom_set->find(_graph.v(edge)); |
| 1263 | |
| 1264 | if ((*_blossom_data)[left].status == EVEN) { |
| 1265 | int left_tree = _tree_set->find(left); |
| 1266 | alternatePath(left, left_tree); |
| 1267 | destroyTree(left_tree); |
| 1268 | } else { |
| 1269 | (*_blossom_data)[left].status = MATCHED; |
| 1270 | unmatchedToMatched(left); |
| 1271 | } |
| 1272 | |
| 1273 | if ((*_blossom_data)[right].status == EVEN) { |
| 1274 | int right_tree = _tree_set->find(right); |
| 1275 | alternatePath(right, right_tree); |
| 1276 | destroyTree(right_tree); |
| 1277 | } else { |
| 1278 | (*_blossom_data)[right].status = MATCHED; |
| 1279 | unmatchedToMatched(right); |
| 1280 | } |
| 1281 | |
| 1282 | (*_blossom_data)[left].next = _graph.direct(edge, true); |
| 1283 | (*_blossom_data)[right].next = _graph.direct(edge, false); |
| 1284 | } |
| 1285 | |
| 1286 | void extendOnArc(const Arc& arc) { |
| 1287 | int base = _blossom_set->find(_graph.target(arc)); |
| 1288 | int tree = _tree_set->find(base); |
| 1289 | |
| 1290 | int odd = _blossom_set->find(_graph.source(arc)); |
| 1291 | _tree_set->insert(odd, tree); |
| 1292 | (*_blossom_data)[odd].status = ODD; |
| 1293 | matchedToOdd(odd); |
| 1294 | (*_blossom_data)[odd].pred = arc; |
| 1295 | |
| 1296 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
| 1297 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
| 1298 | _tree_set->insert(even, tree); |
| 1299 | (*_blossom_data)[even].status = EVEN; |
| 1300 | matchedToEven(even, tree); |
| 1301 | } |
| 1302 | |
| 1303 | void shrinkOnEdge(const Edge& edge, int tree) { |
| 1304 | int nca = -1; |
| 1305 | std::vector<int> left_path, right_path; |
| 1306 | |
| 1307 | { |
| 1308 | std::set<int> left_set, right_set; |
| 1309 | int left = _blossom_set->find(_graph.u(edge)); |
| 1310 | left_path.push_back(left); |
| 1311 | left_set.insert(left); |
| 1312 | |
| 1313 | int right = _blossom_set->find(_graph.v(edge)); |
| 1314 | right_path.push_back(right); |
| 1315 | right_set.insert(right); |
| 1316 | |
| 1317 | while (true) { |
| 1318 | |
| 1319 | if ((*_blossom_data)[left].pred == INVALID) break; |
| 1320 | |
| 1321 | left = |
| 1322 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| 1323 | left_path.push_back(left); |
| 1324 | left = |
| 1325 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| 1326 | left_path.push_back(left); |
| 1327 | |
| 1328 | left_set.insert(left); |
| 1329 | |
| 1330 | if (right_set.find(left) != right_set.end()) { |
| 1331 | nca = left; |
| 1332 | break; |
| 1333 | } |
| 1334 | |
| 1335 | if ((*_blossom_data)[right].pred == INVALID) break; |
| 1336 | |
| 1337 | right = |
| 1338 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| 1339 | right_path.push_back(right); |
| 1340 | right = |
| 1341 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| 1342 | right_path.push_back(right); |
| 1343 | |
| 1344 | right_set.insert(right); |
| 1345 | |
| 1346 | if (left_set.find(right) != left_set.end()) { |
| 1347 | nca = right; |
| 1348 | break; |
| 1349 | } |
| 1350 | |
| 1351 | } |
| 1352 | |
| 1353 | if (nca == -1) { |
| 1354 | if ((*_blossom_data)[left].pred == INVALID) { |
| 1355 | nca = right; |
| 1356 | while (left_set.find(nca) == left_set.end()) { |
| 1357 | nca = |
| 1358 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 1359 | right_path.push_back(nca); |
| 1360 | nca = |
| 1361 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 1362 | right_path.push_back(nca); |
| 1363 | } |
| 1364 | } else { |
| 1365 | nca = left; |
| 1366 | while (right_set.find(nca) == right_set.end()) { |
| 1367 | nca = |
| 1368 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 1369 | left_path.push_back(nca); |
| 1370 | nca = |
| 1371 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 1372 | left_path.push_back(nca); |
| 1373 | } |
| 1374 | } |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | std::vector<int> subblossoms; |
| 1379 | Arc prev; |
| 1380 | |
| 1381 | prev = _graph.direct(edge, true); |
| 1382 | for (int i = 0; left_path[i] != nca; i += 2) { |
| 1383 | subblossoms.push_back(left_path[i]); |
| 1384 | (*_blossom_data)[left_path[i]].next = prev; |
| 1385 | _tree_set->erase(left_path[i]); |
| 1386 | |
| 1387 | subblossoms.push_back(left_path[i + 1]); |
| 1388 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
| 1389 | oddToEven(left_path[i + 1], tree); |
| 1390 | _tree_set->erase(left_path[i + 1]); |
| 1391 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
| 1392 | } |
| 1393 | |
| 1394 | int k = 0; |
| 1395 | while (right_path[k] != nca) ++k; |
| 1396 | |
| 1397 | subblossoms.push_back(nca); |
| 1398 | (*_blossom_data)[nca].next = prev; |
| 1399 | |
| 1400 | for (int i = k - 2; i >= 0; i -= 2) { |
| 1401 | subblossoms.push_back(right_path[i + 1]); |
| 1402 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
| 1403 | oddToEven(right_path[i + 1], tree); |
| 1404 | _tree_set->erase(right_path[i + 1]); |
| 1405 | |
| 1406 | (*_blossom_data)[right_path[i + 1]].next = |
| 1407 | (*_blossom_data)[right_path[i + 1]].pred; |
| 1408 | |
| 1409 | subblossoms.push_back(right_path[i]); |
| 1410 | _tree_set->erase(right_path[i]); |
| 1411 | } |
| 1412 | |
| 1413 | int surface = |
| 1414 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
| 1415 | |
| 1416 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| 1417 | if (!_blossom_set->trivial(subblossoms[i])) { |
| 1418 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
| 1419 | } |
| 1420 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
| 1421 | } |
| 1422 | |
| 1423 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
| 1424 | (*_blossom_data)[surface].offset = 0; |
| 1425 | (*_blossom_data)[surface].status = EVEN; |
| 1426 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
| 1427 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
| 1428 | |
| 1429 | _tree_set->insert(surface, tree); |
| 1430 | _tree_set->erase(nca); |
| 1431 | } |
| 1432 | |
| 1433 | void splitBlossom(int blossom) { |
| 1434 | Arc next = (*_blossom_data)[blossom].next; |
| 1435 | Arc pred = (*_blossom_data)[blossom].pred; |
| 1436 | |
| 1437 | int tree = _tree_set->find(blossom); |
| 1438 | |
| 1439 | (*_blossom_data)[blossom].status = MATCHED; |
| 1440 | oddToMatched(blossom); |
| 1441 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 1442 | _delta2->erase(blossom); |
| 1443 | } |
| 1444 | |
| 1445 | std::vector<int> subblossoms; |
| 1446 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 1447 | |
| 1448 | Value offset = (*_blossom_data)[blossom].offset; |
| 1449 | int b = _blossom_set->find(_graph.source(pred)); |
| 1450 | int d = _blossom_set->find(_graph.source(next)); |
| 1451 | |
| 1452 | int ib = -1, id = -1; |
| 1453 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| 1454 | if (subblossoms[i] == b) ib = i; |
| 1455 | if (subblossoms[i] == d) id = i; |
| 1456 | |
| 1457 | (*_blossom_data)[subblossoms[i]].offset = offset; |
| 1458 | if (!_blossom_set->trivial(subblossoms[i])) { |
| 1459 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
| 1460 | } |
| 1461 | if (_blossom_set->classPrio(subblossoms[i]) != |
| 1462 | std::numeric_limits<Value>::max()) { |
| 1463 | _delta2->push(subblossoms[i], |
| 1464 | _blossom_set->classPrio(subblossoms[i]) - |
| 1465 | (*_blossom_data)[subblossoms[i]].offset); |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
| 1470 | for (int i = (id + 1) % subblossoms.size(); |
| 1471 | i != ib; i = (i + 2) % subblossoms.size()) { |
| 1472 | int sb = subblossoms[i]; |
| 1473 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1474 | (*_blossom_data)[sb].next = |
| 1475 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 1476 | } |
| 1477 | |
| 1478 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
| 1479 | int sb = subblossoms[i]; |
| 1480 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1481 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 1482 | |
| 1483 | (*_blossom_data)[sb].status = ODD; |
| 1484 | matchedToOdd(sb); |
| 1485 | _tree_set->insert(sb, tree); |
| 1486 | (*_blossom_data)[sb].pred = pred; |
| 1487 | (*_blossom_data)[sb].next = |
| 1488 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 1489 | |
| 1490 | pred = (*_blossom_data)[ub].next; |
| 1491 | |
| 1492 | (*_blossom_data)[tb].status = EVEN; |
| 1493 | matchedToEven(tb, tree); |
| 1494 | _tree_set->insert(tb, tree); |
| 1495 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| 1496 | } |
| 1497 | |
| 1498 | (*_blossom_data)[subblossoms[id]].status = ODD; |
| 1499 | matchedToOdd(subblossoms[id]); |
| 1500 | _tree_set->insert(subblossoms[id], tree); |
| 1501 | (*_blossom_data)[subblossoms[id]].next = next; |
| 1502 | (*_blossom_data)[subblossoms[id]].pred = pred; |
| 1503 | |
| 1504 | } else { |
| 1505 | |
| 1506 | for (int i = (ib + 1) % subblossoms.size(); |
| 1507 | i != id; i = (i + 2) % subblossoms.size()) { |
| 1508 | int sb = subblossoms[i]; |
| 1509 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1510 | (*_blossom_data)[sb].next = |
| 1511 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 1512 | } |
| 1513 | |
| 1514 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
| 1515 | int sb = subblossoms[i]; |
| 1516 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1517 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 1518 | |
| 1519 | (*_blossom_data)[sb].status = ODD; |
| 1520 | matchedToOdd(sb); |
| 1521 | _tree_set->insert(sb, tree); |
| 1522 | (*_blossom_data)[sb].next = next; |
| 1523 | (*_blossom_data)[sb].pred = |
| 1524 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 1525 | |
| 1526 | (*_blossom_data)[tb].status = EVEN; |
| 1527 | matchedToEven(tb, tree); |
| 1528 | _tree_set->insert(tb, tree); |
| 1529 | (*_blossom_data)[tb].pred = |
| 1530 | (*_blossom_data)[tb].next = |
| 1531 | _graph.oppositeArc((*_blossom_data)[ub].next); |
| 1532 | next = (*_blossom_data)[ub].next; |
| 1533 | } |
| 1534 | |
| 1535 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
| 1536 | matchedToOdd(subblossoms[ib]); |
| 1537 | _tree_set->insert(subblossoms[ib], tree); |
| 1538 | (*_blossom_data)[subblossoms[ib]].next = next; |
| 1539 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
| 1540 | } |
| 1541 | _tree_set->erase(blossom); |
| 1542 | } |
| 1543 | |
| 1544 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
| 1545 | if (_blossom_set->trivial(blossom)) { |
| 1546 | int bi = (*_node_index)[base]; |
| 1547 | Value pot = (*_node_data)[bi].pot; |
| 1548 | |
| 1549 | _matching->set(base, matching); |
| 1550 | _blossom_node_list.push_back(base); |
| 1551 | _node_potential->set(base, pot); |
| 1552 | } else { |
| 1553 | |
| 1554 | Value pot = (*_blossom_data)[blossom].pot; |
| 1555 | int bn = _blossom_node_list.size(); |
| 1556 | |
| 1557 | std::vector<int> subblossoms; |
| 1558 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 1559 | int b = _blossom_set->find(base); |
| 1560 | int ib = -1; |
| 1561 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| 1562 | if (subblossoms[i] == b) { ib = i; break; } |
| 1563 | } |
| 1564 | |
| 1565 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
| 1566 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 1567 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 1568 | |
| 1569 | Arc m = (*_blossom_data)[tb].next; |
| 1570 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 1571 | extractBlossom(tb, _graph.source(m), m); |
| 1572 | } |
| 1573 | extractBlossom(subblossoms[ib], base, matching); |
| 1574 | |
| 1575 | int en = _blossom_node_list.size(); |
| 1576 | |
| 1577 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | void extractMatching() { |
| 1582 | std::vector<int> blossoms; |
| 1583 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
| 1584 | blossoms.push_back(c); |
| 1585 | } |
| 1586 | |
| 1587 | for (int i = 0; i < int(blossoms.size()); ++i) { |
| 1588 | if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
| 1589 | |
| 1590 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 1591 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 1592 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 1593 | n != INVALID; ++n) { |
| 1594 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
| 1595 | } |
| 1596 | |
| 1597 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 1598 | Node base = _graph.source(matching); |
| 1599 | extractBlossom(blossoms[i], base, matching); |
| 1600 | } else { |
| 1601 | Node base = (*_blossom_data)[blossoms[i]].base; |
| 1602 | extractBlossom(blossoms[i], base, INVALID); |
| 1603 | } |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | public: |
| 1608 | |
| 1609 | /// \brief Constructor |
| 1610 | /// |
| 1611 | /// Constructor. |
| 1612 | MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
| 1613 | : _graph(graph), _weight(weight), _matching(0), |
| 1614 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 1615 | _node_num(0), _blossom_num(0), |
| 1616 | |
| 1617 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 1618 | _node_index(0), _node_heap_index(0), _node_data(0), |
| 1619 | _tree_set_index(0), _tree_set(0), |
| 1620 | |
| 1621 | _delta1_index(0), _delta1(0), |
| 1622 | _delta2_index(0), _delta2(0), |
| 1623 | _delta3_index(0), _delta3(0), |
| 1624 | _delta4_index(0), _delta4(0), |
| 1625 | |
| 1626 | _delta_sum() {} |
| 1627 | |
| 1628 | ~MaxWeightedMatching() { |
| 1629 | destroyStructures(); |
| 1630 | } |
| 1631 | |
| 1632 | /// \name Execution control |
| 1633 | /// The simplest way to execute the algorithm is to use the member |
| 1634 | /// \c run() member function. |
| 1635 | |
| 1636 | ///@{ |
| 1637 | |
| 1638 | /// \brief Initialize the algorithm |
| 1639 | /// |
| 1640 | /// Initialize the algorithm |
| 1641 | void init() { |
| 1642 | createStructures(); |
| 1643 | |
| 1644 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| 1645 | _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP); |
| 1646 | } |
| 1647 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 1648 | _delta1_index->set(n, _delta1->PRE_HEAP); |
| 1649 | } |
| 1650 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| 1651 | _delta3_index->set(e, _delta3->PRE_HEAP); |
| 1652 | } |
| 1653 | for (int i = 0; i < _blossom_num; ++i) { |
| 1654 | _delta2_index->set(i, _delta2->PRE_HEAP); |
| 1655 | _delta4_index->set(i, _delta4->PRE_HEAP); |
| 1656 | } |
| 1657 | |
| 1658 | int index = 0; |
| 1659 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 1660 | Value max = 0; |
| 1661 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| 1662 | if (_graph.target(e) == n) continue; |
| 1663 | if ((dualScale * _weight[e]) / 2 > max) { |
| 1664 | max = (dualScale * _weight[e]) / 2; |
| 1665 | } |
| 1666 | } |
| 1667 | _node_index->set(n, index); |
| 1668 | (*_node_data)[index].pot = max; |
| 1669 | _delta1->push(n, max); |
| 1670 | int blossom = |
| 1671 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 1672 | |
| 1673 | _tree_set->insert(blossom); |
| 1674 | |
| 1675 | (*_blossom_data)[blossom].status = EVEN; |
| 1676 | (*_blossom_data)[blossom].pred = INVALID; |
| 1677 | (*_blossom_data)[blossom].next = INVALID; |
| 1678 | (*_blossom_data)[blossom].pot = 0; |
| 1679 | (*_blossom_data)[blossom].offset = 0; |
| 1680 | ++index; |
| 1681 | } |
| 1682 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| 1683 | int si = (*_node_index)[_graph.u(e)]; |
| 1684 | int ti = (*_node_index)[_graph.v(e)]; |
| 1685 | if (_graph.u(e) != _graph.v(e)) { |
| 1686 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 1687 | dualScale * _weight[e]) / 2); |
| 1688 | } |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | /// \brief Starts the algorithm |
| 1693 | /// |
| 1694 | /// Starts the algorithm |
| 1695 | void start() { |
| 1696 | enum OpType { |
| 1697 | D1, D2, D3, D4 |
| 1698 | }; |
| 1699 | |
| 1700 | int unmatched = _node_num; |
| 1701 | while (unmatched > 0) { |
| 1702 | Value d1 = !_delta1->empty() ? |
| 1703 | _delta1->prio() : std::numeric_limits<Value>::max(); |
| 1704 | |
| 1705 | Value d2 = !_delta2->empty() ? |
| 1706 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| 1707 | |
| 1708 | Value d3 = !_delta3->empty() ? |
| 1709 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| 1710 | |
| 1711 | Value d4 = !_delta4->empty() ? |
| 1712 | _delta4->prio() : std::numeric_limits<Value>::max(); |
| 1713 | |
| 1714 | _delta_sum = d1; OpType ot = D1; |
| 1715 | if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
| 1716 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
| 1717 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
| 1718 | |
| 1719 | |
| 1720 | switch (ot) { |
| 1721 | case D1: |
| 1722 | { |
| 1723 | Node n = _delta1->top(); |
| 1724 | unmatchNode(n); |
| 1725 | --unmatched; |
| 1726 | } |
| 1727 | break; |
| 1728 | case D2: |
| 1729 | { |
| 1730 | int blossom = _delta2->top(); |
| 1731 | Node n = _blossom_set->classTop(blossom); |
| 1732 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 1733 | extendOnArc(e); |
| 1734 | } |
| 1735 | break; |
| 1736 | case D3: |
| 1737 | { |
| 1738 | Edge e = _delta3->top(); |
| 1739 | |
| 1740 | int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1741 | int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1742 | |
| 1743 | if (left_blossom == right_blossom) { |
| 1744 | _delta3->pop(); |
| 1745 | } else { |
| 1746 | int left_tree; |
| 1747 | if ((*_blossom_data)[left_blossom].status == EVEN) { |
| 1748 | left_tree = _tree_set->find(left_blossom); |
| 1749 | } else { |
| 1750 | left_tree = -1; |
| 1751 | ++unmatched; |
| 1752 | } |
| 1753 | int right_tree; |
| 1754 | if ((*_blossom_data)[right_blossom].status == EVEN) { |
| 1755 | right_tree = _tree_set->find(right_blossom); |
| 1756 | } else { |
| 1757 | right_tree = -1; |
| 1758 | ++unmatched; |
| 1759 | } |
| 1760 | |
| 1761 | if (left_tree == right_tree) { |
| 1762 | shrinkOnEdge(e, left_tree); |
| 1763 | } else { |
| 1764 | augmentOnEdge(e); |
| 1765 | unmatched -= 2; |
| 1766 | } |
| 1767 | } |
| 1768 | } break; |
| 1769 | case D4: |
| 1770 | splitBlossom(_delta4->top()); |
| 1771 | break; |
| 1772 | } |
| 1773 | } |
| 1774 | extractMatching(); |
| 1775 | } |
| 1776 | |
| 1777 | /// \brief Runs %MaxWeightedMatching algorithm. |
| 1778 | /// |
| 1779 | /// This method runs the %MaxWeightedMatching algorithm. |
| 1780 | /// |
| 1781 | /// \note mwm.run() is just a shortcut of the following code. |
| 1782 | /// \code |
| 1783 | /// mwm.init(); |
| 1784 | /// mwm.start(); |
| 1785 | /// \endcode |
| 1786 | void run() { |
| 1787 | init(); |
| 1788 | start(); |
| 1789 | } |
| 1790 | |
| 1791 | /// @} |
| 1792 | |
| 1793 | /// \name Primal solution |
| 1794 | /// Functions for get the primal solution, ie. the matching. |
| 1795 | |
| 1796 | /// @{ |
| 1797 | |
| 1798 | /// \brief Returns the matching value. |
| 1799 | /// |
| 1800 | /// Returns the matching value. |
| 1801 | Value matchingValue() const { |
| 1802 | Value sum = 0; |
| 1803 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 1804 | if ((*_matching)[n] != INVALID) { |
| 1805 | sum += _weight[(*_matching)[n]]; |
| 1806 | } |
| 1807 | } |
| 1808 | return sum /= 2; |
| 1809 | } |
| 1810 | |
| 1811 | /// \brief Returns the cardinality of the matching. |
| 1812 | /// |
| 1813 | /// Returns the cardinality of the matching. |
| 1814 | int matchingSize() const { |
| 1815 | int num = 0; |
| 1816 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 1817 | if ((*_matching)[n] != INVALID) { |
| 1818 | ++num; |
| 1819 | } |
| 1820 | } |
| 1821 | return num /= 2; |
| 1822 | } |
| 1823 | |
| 1824 | /// \brief Returns true when the edge is in the matching. |
| 1825 | /// |
| 1826 | /// Returns true when the edge is in the matching. |
| 1827 | bool matching(const Edge& edge) const { |
| 1828 | return edge == (*_matching)[_graph.u(edge)]; |
| 1829 | } |
| 1830 | |
| 1831 | /// \brief Returns the incident matching arc. |
| 1832 | /// |
| 1833 | /// Returns the incident matching arc from given node. If the |
| 1834 | /// node is not matched then it gives back \c INVALID. |
| 1835 | Arc matching(const Node& node) const { |
| 1836 | return (*_matching)[node]; |
| 1837 | } |
| 1838 | |
| 1839 | /// \brief Returns the mate of the node. |
| 1840 | /// |
| 1841 | /// Returns the adjancent node in a mathcing arc. If the node is |
| 1842 | /// not matched then it gives back \c INVALID. |
| 1843 | Node mate(const Node& node) const { |
| 1844 | return (*_matching)[node] != INVALID ? |
| 1845 | _graph.target((*_matching)[node]) : INVALID; |
| 1846 | } |
| 1847 | |
| 1848 | /// @} |
| 1849 | |
| 1850 | /// \name Dual solution |
| 1851 | /// Functions for get the dual solution. |
| 1852 | |
| 1853 | /// @{ |
| 1854 | |
| 1855 | /// \brief Returns the value of the dual solution. |
| 1856 | /// |
| 1857 | /// Returns the value of the dual solution. It should be equal to |
| 1858 | /// the primal value scaled by \ref dualScale "dual scale". |
| 1859 | Value dualValue() const { |
| 1860 | Value sum = 0; |
| 1861 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 1862 | sum += nodeValue(n); |
| 1863 | } |
| 1864 | for (int i = 0; i < blossomNum(); ++i) { |
| 1865 | sum += blossomValue(i) * (blossomSize(i) / 2); |
| 1866 | } |
| 1867 | return sum; |
| 1868 | } |
| 1869 | |
| 1870 | /// \brief Returns the value of the node. |
| 1871 | /// |
| 1872 | /// Returns the the value of the node. |
| 1873 | Value nodeValue(const Node& n) const { |
| 1874 | return (*_node_potential)[n]; |
| 1875 | } |
| 1876 | |
| 1877 | /// \brief Returns the number of the blossoms in the basis. |
| 1878 | /// |
| 1879 | /// Returns the number of the blossoms in the basis. |
| 1880 | /// \see BlossomIt |
| 1881 | int blossomNum() const { |
| 1882 | return _blossom_potential.size(); |
| 1883 | } |
| 1884 | |
| 1885 | |
| 1886 | /// \brief Returns the number of the nodes in the blossom. |
| 1887 | /// |
| 1888 | /// Returns the number of the nodes in the blossom. |
| 1889 | int blossomSize(int k) const { |
| 1890 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
| 1891 | } |
| 1892 | |
| 1893 | /// \brief Returns the value of the blossom. |
| 1894 | /// |
| 1895 | /// Returns the the value of the blossom. |
| 1896 | /// \see BlossomIt |
| 1897 | Value blossomValue(int k) const { |
| 1898 | return _blossom_potential[k].value; |
| 1899 | } |
| 1900 | |
| 1901 | /// \brief Lemon iterator for get the items of the blossom. |
| 1902 | /// |
| 1903 | /// Lemon iterator for get the nodes of the blossom. This class |
| 1904 | /// provides a common style lemon iterator which gives back a |
| 1905 | /// subset of the nodes. |
| 1906 | class BlossomIt { |
| 1907 | public: |
| 1908 | |
| 1909 | /// \brief Constructor. |
| 1910 | /// |
| 1911 | /// Constructor for get the nodes of the variable. |
| 1912 | BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
| 1913 | : _algorithm(&algorithm) |
| 1914 | { |
| 1915 | _index = _algorithm->_blossom_potential[variable].begin; |
| 1916 | _last = _algorithm->_blossom_potential[variable].end; |
| 1917 | } |
| 1918 | |
| 1919 | /// \brief Conversion to node. |
| 1920 | /// |
| 1921 | /// Conversion to node. |
| 1922 | operator Node() const { |
| 1923 | return _algorithm->_blossom_node_list[_index]; |
| 1924 | } |
| 1925 | |
| 1926 | /// \brief Increment operator. |
| 1927 | /// |
| 1928 | /// Increment operator. |
| 1929 | BlossomIt& operator++() { |
| 1930 | ++_index; |
| 1931 | return *this; |
| 1932 | } |
| 1933 | |
| 1934 | /// \brief Validity checking |
| 1935 | /// |
| 1936 | /// Checks whether the iterator is invalid. |
| 1937 | bool operator==(Invalid) const { return _index == _last; } |
| 1938 | |
| 1939 | /// \brief Validity checking |
| 1940 | /// |
| 1941 | /// Checks whether the iterator is valid. |
| 1942 | bool operator!=(Invalid) const { return _index != _last; } |
| 1943 | |
| 1944 | private: |
| 1945 | const MaxWeightedMatching* _algorithm; |
| 1946 | int _last; |
| 1947 | int _index; |
| 1948 | }; |
| 1949 | |
| 1950 | /// @} |
| 1951 | |
| 1952 | }; |
| 1953 | |
| 1954 | /// \ingroup matching |
| 1955 | /// |
| 1956 | /// \brief Weighted perfect matching in general graphs |
| 1957 | /// |
| 1958 | /// This class provides an efficient implementation of Edmond's |
| 1959 | /// maximum weighted perfect matching algorithm. The implementation |
| 1960 | /// is based on extensive use of priority queues and provides |
| 1961 | /// \f$O(nm\log(n))\f$ time complexity. |
| 1962 | /// |
| 1963 | /// The maximum weighted matching problem is to find undirected |
| 1964 | /// edges in the graph with maximum overall weight and no two of |
| 1965 | /// them shares their ends and covers all nodes. The problem can be |
| 1966 | /// formulated with the following linear program. |
| 1967 | /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
| 1968 | /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
| 1969 | \quad \forall B\in\mathcal{O}\f] */ |
| 1970 | /// \f[x_e \ge 0\quad \forall e\in E\f] |
| 1971 | /// \f[\max \sum_{e\in E}x_ew_e\f] |
| 1972 | /// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 1973 | /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 1974 | /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
| 1975 | /// subsets of the nodes. |
| 1976 | /// |
| 1977 | /// The algorithm calculates an optimal matching and a proof of the |
| 1978 | /// optimality. The solution of the dual problem can be used to check |
| 1979 | /// the result of the algorithm. The dual linear problem is the |
| 1980 | /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
| 1981 | w_{uv} \quad \forall uv\in E\f] */ |
| 1982 | /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
| 1983 | /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
| 1984 | \frac{\vert B \vert - 1}{2}z_B\f] */ |
| 1985 | /// |
| 1986 | /// The algorithm can be executed with \c run() or the \c init() and |
| 1987 | /// then the \c start() member functions. After it the matching can |
| 1988 | /// be asked with \c matching() or mate() functions. The dual |
| 1989 | /// solution can be get with \c nodeValue(), \c blossomNum() and \c |
| 1990 | /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
| 1991 | /// "BlossomIt" nested class which is able to iterate on the nodes |
| 1992 | /// of a blossom. If the value type is integral then the dual |
| 1993 | /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
| 1994 | template <typename _Graph, |
| 1995 | typename _WeightMap = typename _Graph::template EdgeMap<int> > |
| 1996 | class MaxWeightedPerfectMatching { |
| 1997 | public: |
| 1998 | |
| 1999 | typedef _Graph Graph; |
| 2000 | typedef _WeightMap WeightMap; |
| 2001 | typedef typename WeightMap::Value Value; |
| 2002 | |
| 2003 | /// \brief Scaling factor for dual solution |
| 2004 | /// |
| 2005 | /// Scaling factor for dual solution, it is equal to 4 or 1 |
| 2006 | /// according to the value type. |
| 2007 | static const int dualScale = |
| 2008 | std::numeric_limits<Value>::is_integer ? 4 : 1; |
| 2009 | |
| 2010 | typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 2011 | MatchingMap; |
| 2012 | |
| 2013 | private: |
| 2014 | |
| 2015 | TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2016 | |
| 2017 | typedef typename Graph::template NodeMap<Value> NodePotential; |
| 2018 | typedef std::vector<Node> BlossomNodeList; |
| 2019 | |
| 2020 | struct BlossomVariable { |
| 2021 | int begin, end; |
| 2022 | Value value; |
| 2023 | |
| 2024 | BlossomVariable(int _begin, int _end, Value _value) |
| 2025 | : begin(_begin), end(_end), value(_value) {} |
| 2026 | |
| 2027 | }; |
| 2028 | |
| 2029 | typedef std::vector<BlossomVariable> BlossomPotential; |
| 2030 | |
| 2031 | const Graph& _graph; |
| 2032 | const WeightMap& _weight; |
| 2033 | |
| 2034 | MatchingMap* _matching; |
| 2035 | |
| 2036 | NodePotential* _node_potential; |
| 2037 | |
| 2038 | BlossomPotential _blossom_potential; |
| 2039 | BlossomNodeList _blossom_node_list; |
| 2040 | |
| 2041 | int _node_num; |
| 2042 | int _blossom_num; |
| 2043 | |
| 2044 | typedef RangeMap<int> IntIntMap; |
| 2045 | |
| 2046 | enum Status { |
| 2047 | EVEN = -1, MATCHED = 0, ODD = 1 |
| 2048 | }; |
| 2049 | |
| 2050 | typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 2051 | struct BlossomData { |
| 2052 | int tree; |
| 2053 | Status status; |
| 2054 | Arc pred, next; |
| 2055 | Value pot, offset; |
| 2056 | }; |
| 2057 | |
| 2058 | IntNodeMap *_blossom_index; |
| 2059 | BlossomSet *_blossom_set; |
| 2060 | RangeMap<BlossomData>* _blossom_data; |
| 2061 | |
| 2062 | IntNodeMap *_node_index; |
| 2063 | IntArcMap *_node_heap_index; |
| 2064 | |
| 2065 | struct NodeData { |
| 2066 | |
| 2067 | NodeData(IntArcMap& node_heap_index) |
| 2068 | : heap(node_heap_index) {} |
| 2069 | |
| 2070 | int blossom; |
| 2071 | Value pot; |
| 2072 | BinHeap<Value, IntArcMap> heap; |
| 2073 | std::map<int, Arc> heap_index; |
| 2074 | |
| 2075 | int tree; |
| 2076 | }; |
| 2077 | |
| 2078 | RangeMap<NodeData>* _node_data; |
| 2079 | |
| 2080 | typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 2081 | |
| 2082 | IntIntMap *_tree_set_index; |
| 2083 | TreeSet *_tree_set; |
| 2084 | |
| 2085 | IntIntMap *_delta2_index; |
| 2086 | BinHeap<Value, IntIntMap> *_delta2; |
| 2087 | |
| 2088 | IntEdgeMap *_delta3_index; |
| 2089 | BinHeap<Value, IntEdgeMap> *_delta3; |
| 2090 | |
| 2091 | IntIntMap *_delta4_index; |
| 2092 | BinHeap<Value, IntIntMap> *_delta4; |
| 2093 | |
| 2094 | Value _delta_sum; |
| 2095 | |
| 2096 | void createStructures() { |
| 2097 | _node_num = countNodes(_graph); |
| 2098 | _blossom_num = _node_num * 3 / 2; |
| 2099 | |
| 2100 | if (!_matching) { |
| 2101 | _matching = new MatchingMap(_graph); |
| 2102 | } |
| 2103 | if (!_node_potential) { |
| 2104 | _node_potential = new NodePotential(_graph); |
| 2105 | } |
| 2106 | if (!_blossom_set) { |
| 2107 | _blossom_index = new IntNodeMap(_graph); |
| 2108 | _blossom_set = new BlossomSet(*_blossom_index); |
| 2109 | _blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 2110 | } |
| 2111 | |
| 2112 | if (!_node_index) { |
| 2113 | _node_index = new IntNodeMap(_graph); |
| 2114 | _node_heap_index = new IntArcMap(_graph); |
| 2115 | _node_data = new RangeMap<NodeData>(_node_num, |
| 2116 | NodeData(*_node_heap_index)); |
| 2117 | } |
| 2118 | |
| 2119 | if (!_tree_set) { |
| 2120 | _tree_set_index = new IntIntMap(_blossom_num); |
| 2121 | _tree_set = new TreeSet(*_tree_set_index); |
| 2122 | } |
| 2123 | if (!_delta2) { |
| 2124 | _delta2_index = new IntIntMap(_blossom_num); |
| 2125 | _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 2126 | } |
| 2127 | if (!_delta3) { |
| 2128 | _delta3_index = new IntEdgeMap(_graph); |
| 2129 | _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 2130 | } |
| 2131 | if (!_delta4) { |
| 2132 | _delta4_index = new IntIntMap(_blossom_num); |
| 2133 | _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | void destroyStructures() { |
| 2138 | _node_num = countNodes(_graph); |
| 2139 | _blossom_num = _node_num * 3 / 2; |
| 2140 | |
| 2141 | if (_matching) { |
| 2142 | delete _matching; |
| 2143 | } |
| 2144 | if (_node_potential) { |
| 2145 | delete _node_potential; |
| 2146 | } |
| 2147 | if (_blossom_set) { |
| 2148 | delete _blossom_index; |
| 2149 | delete _blossom_set; |
| 2150 | delete _blossom_data; |
| 2151 | } |
| 2152 | |
| 2153 | if (_node_index) { |
| 2154 | delete _node_index; |
| 2155 | delete _node_heap_index; |
| 2156 | delete _node_data; |
| 2157 | } |
| 2158 | |
| 2159 | if (_tree_set) { |
| 2160 | delete _tree_set_index; |
| 2161 | delete _tree_set; |
| 2162 | } |
| 2163 | if (_delta2) { |
| 2164 | delete _delta2_index; |
| 2165 | delete _delta2; |
| 2166 | } |
| 2167 | if (_delta3) { |
| 2168 | delete _delta3_index; |
| 2169 | delete _delta3; |
| 2170 | } |
| 2171 | if (_delta4) { |
| 2172 | delete _delta4_index; |
| 2173 | delete _delta4; |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | void matchedToEven(int blossom, int tree) { |
| 2178 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 2179 | _delta2->erase(blossom); |
| 2180 | } |
| 2181 | |
| 2182 | if (!_blossom_set->trivial(blossom)) { |
| 2183 | (*_blossom_data)[blossom].pot -= |
| 2184 | 2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
| 2185 | } |
| 2186 | |
| 2187 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 2188 | n != INVALID; ++n) { |
| 2189 | |
| 2190 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 2191 | int ni = (*_node_index)[n]; |
| 2192 | |
| 2193 | (*_node_data)[ni].heap.clear(); |
| 2194 | (*_node_data)[ni].heap_index.clear(); |
| 2195 | |
| 2196 | (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 2197 | |
| 2198 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 2199 | Node v = _graph.source(e); |
| 2200 | int vb = _blossom_set->find(v); |
| 2201 | int vi = (*_node_index)[v]; |
| 2202 | |
| 2203 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 2204 | dualScale * _weight[e]; |
| 2205 | |
| 2206 | if ((*_blossom_data)[vb].status == EVEN) { |
| 2207 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| 2208 | _delta3->push(e, rw / 2); |
| 2209 | } |
| 2210 | } else { |
| 2211 | typename std::map<int, Arc>::iterator it = |
| 2212 | (*_node_data)[vi].heap_index.find(tree); |
| 2213 | |
| 2214 | if (it != (*_node_data)[vi].heap_index.end()) { |
| 2215 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| 2216 | (*_node_data)[vi].heap.replace(it->second, e); |
| 2217 | (*_node_data)[vi].heap.decrease(e, rw); |
| 2218 | it->second = e; |
| 2219 | } |
| 2220 | } else { |
| 2221 | (*_node_data)[vi].heap.push(e, rw); |
| 2222 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 2223 | } |
| 2224 | |
| 2225 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| 2226 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 2227 | |
| 2228 | if ((*_blossom_data)[vb].status == MATCHED) { |
| 2229 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| 2230 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| 2231 | (*_blossom_data)[vb].offset); |
| 2232 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 2233 | (*_blossom_data)[vb].offset){ |
| 2234 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 2235 | (*_blossom_data)[vb].offset); |
| 2236 | } |
| 2237 | } |
| 2238 | } |
| 2239 | } |
| 2240 | } |
| 2241 | } |
| 2242 | (*_blossom_data)[blossom].offset = 0; |
| 2243 | } |
| 2244 | |
| 2245 | void matchedToOdd(int blossom) { |
| 2246 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 2247 | _delta2->erase(blossom); |
| 2248 | } |
| 2249 | (*_blossom_data)[blossom].offset += _delta_sum; |
| 2250 | if (!_blossom_set->trivial(blossom)) { |
| 2251 | _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
| 2252 | (*_blossom_data)[blossom].offset); |
| 2253 | } |
| 2254 | } |
| 2255 | |
| 2256 | void evenToMatched(int blossom, int tree) { |
| 2257 | if (!_blossom_set->trivial(blossom)) { |
| 2258 | (*_blossom_data)[blossom].pot += 2 * _delta_sum; |
| 2259 | } |
| 2260 | |
| 2261 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 2262 | n != INVALID; ++n) { |
| 2263 | int ni = (*_node_index)[n]; |
| 2264 | (*_node_data)[ni].pot -= _delta_sum; |
| 2265 | |
| 2266 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 2267 | Node v = _graph.source(e); |
| 2268 | int vb = _blossom_set->find(v); |
| 2269 | int vi = (*_node_index)[v]; |
| 2270 | |
| 2271 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 2272 | dualScale * _weight[e]; |
| 2273 | |
| 2274 | if (vb == blossom) { |
| 2275 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 2276 | _delta3->erase(e); |
| 2277 | } |
| 2278 | } else if ((*_blossom_data)[vb].status == EVEN) { |
| 2279 | |
| 2280 | if (_delta3->state(e) == _delta3->IN_HEAP) { |
| 2281 | _delta3->erase(e); |
| 2282 | } |
| 2283 | |
| 2284 | int vt = _tree_set->find(vb); |
| 2285 | |
| 2286 | if (vt != tree) { |
| 2287 | |
| 2288 | Arc r = _graph.oppositeArc(e); |
| 2289 | |
| 2290 | typename std::map<int, Arc>::iterator it = |
| 2291 | (*_node_data)[ni].heap_index.find(vt); |
| 2292 | |
| 2293 | if (it != (*_node_data)[ni].heap_index.end()) { |
| 2294 | if ((*_node_data)[ni].heap[it->second] > rw) { |
| 2295 | (*_node_data)[ni].heap.replace(it->second, r); |
| 2296 | (*_node_data)[ni].heap.decrease(r, rw); |
| 2297 | it->second = r; |
| 2298 | } |
| 2299 | } else { |
| 2300 | (*_node_data)[ni].heap.push(r, rw); |
| 2301 | (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| 2302 | } |
| 2303 | |
| 2304 | if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
| 2305 | _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| 2306 | |
| 2307 | if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
| 2308 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 2309 | (*_blossom_data)[blossom].offset); |
| 2310 | } else if ((*_delta2)[blossom] > |
| 2311 | _blossom_set->classPrio(blossom) - |
| 2312 | (*_blossom_data)[blossom].offset){ |
| 2313 | _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| 2314 | (*_blossom_data)[blossom].offset); |
| 2315 | } |
| 2316 | } |
| 2317 | } |
| 2318 | } else { |
| 2319 | |
| 2320 | typename std::map<int, Arc>::iterator it = |
| 2321 | (*_node_data)[vi].heap_index.find(tree); |
| 2322 | |
| 2323 | if (it != (*_node_data)[vi].heap_index.end()) { |
| 2324 | (*_node_data)[vi].heap.erase(it->second); |
| 2325 | (*_node_data)[vi].heap_index.erase(it); |
| 2326 | if ((*_node_data)[vi].heap.empty()) { |
| 2327 | _blossom_set->increase(v, std::numeric_limits<Value>::max()); |
| 2328 | } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
| 2329 | _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
| 2330 | } |
| 2331 | |
| 2332 | if ((*_blossom_data)[vb].status == MATCHED) { |
| 2333 | if (_blossom_set->classPrio(vb) == |
| 2334 | std::numeric_limits<Value>::max()) { |
| 2335 | _delta2->erase(vb); |
| 2336 | } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
| 2337 | (*_blossom_data)[vb].offset) { |
| 2338 | _delta2->increase(vb, _blossom_set->classPrio(vb) - |
| 2339 | (*_blossom_data)[vb].offset); |
| 2340 | } |
| 2341 | } |
| 2342 | } |
| 2343 | } |
| 2344 | } |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | void oddToMatched(int blossom) { |
| 2349 | (*_blossom_data)[blossom].offset -= _delta_sum; |
| 2350 | |
| 2351 | if (_blossom_set->classPrio(blossom) != |
| 2352 | std::numeric_limits<Value>::max()) { |
| 2353 | _delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 2354 | (*_blossom_data)[blossom].offset); |
| 2355 | } |
| 2356 | |
| 2357 | if (!_blossom_set->trivial(blossom)) { |
| 2358 | _delta4->erase(blossom); |
| 2359 | } |
| 2360 | } |
| 2361 | |
| 2362 | void oddToEven(int blossom, int tree) { |
| 2363 | if (!_blossom_set->trivial(blossom)) { |
| 2364 | _delta4->erase(blossom); |
| 2365 | (*_blossom_data)[blossom].pot -= |
| 2366 | 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
| 2367 | } |
| 2368 | |
| 2369 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 2370 | n != INVALID; ++n) { |
| 2371 | int ni = (*_node_index)[n]; |
| 2372 | |
| 2373 | _blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 2374 | |
| 2375 | (*_node_data)[ni].heap.clear(); |
| 2376 | (*_node_data)[ni].heap_index.clear(); |
| 2377 | (*_node_data)[ni].pot += |
| 2378 | 2 * _delta_sum - (*_blossom_data)[blossom].offset; |
| 2379 | |
| 2380 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
| 2381 | Node v = _graph.source(e); |
| 2382 | int vb = _blossom_set->find(v); |
| 2383 | int vi = (*_node_index)[v]; |
| 2384 | |
| 2385 | Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 2386 | dualScale * _weight[e]; |
| 2387 | |
| 2388 | if ((*_blossom_data)[vb].status == EVEN) { |
| 2389 | if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
| 2390 | _delta3->push(e, rw / 2); |
| 2391 | } |
| 2392 | } else { |
| 2393 | |
| 2394 | typename std::map<int, Arc>::iterator it = |
| 2395 | (*_node_data)[vi].heap_index.find(tree); |
| 2396 | |
| 2397 | if (it != (*_node_data)[vi].heap_index.end()) { |
| 2398 | if ((*_node_data)[vi].heap[it->second] > rw) { |
| 2399 | (*_node_data)[vi].heap.replace(it->second, e); |
| 2400 | (*_node_data)[vi].heap.decrease(e, rw); |
| 2401 | it->second = e; |
| 2402 | } |
| 2403 | } else { |
| 2404 | (*_node_data)[vi].heap.push(e, rw); |
| 2405 | (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 2406 | } |
| 2407 | |
| 2408 | if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
| 2409 | _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 2410 | |
| 2411 | if ((*_blossom_data)[vb].status == MATCHED) { |
| 2412 | if (_delta2->state(vb) != _delta2->IN_HEAP) { |
| 2413 | _delta2->push(vb, _blossom_set->classPrio(vb) - |
| 2414 | (*_blossom_data)[vb].offset); |
| 2415 | } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 2416 | (*_blossom_data)[vb].offset) { |
| 2417 | _delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 2418 | (*_blossom_data)[vb].offset); |
| 2419 | } |
| 2420 | } |
| 2421 | } |
| 2422 | } |
| 2423 | } |
| 2424 | } |
| 2425 | (*_blossom_data)[blossom].offset = 0; |
| 2426 | } |
| 2427 | |
| 2428 | void alternatePath(int even, int tree) { |
| 2429 | int odd; |
| 2430 | |
| 2431 | evenToMatched(even, tree); |
| 2432 | (*_blossom_data)[even].status = MATCHED; |
| 2433 | |
| 2434 | while ((*_blossom_data)[even].pred != INVALID) { |
| 2435 | odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
| 2436 | (*_blossom_data)[odd].status = MATCHED; |
| 2437 | oddToMatched(odd); |
| 2438 | (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
| 2439 | |
| 2440 | even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
| 2441 | (*_blossom_data)[even].status = MATCHED; |
| 2442 | evenToMatched(even, tree); |
| 2443 | (*_blossom_data)[even].next = |
| 2444 | _graph.oppositeArc((*_blossom_data)[odd].pred); |
| 2445 | } |
| 2446 | |
| 2447 | } |
| 2448 | |
| 2449 | void destroyTree(int tree) { |
| 2450 | for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
| 2451 | if ((*_blossom_data)[b].status == EVEN) { |
| 2452 | (*_blossom_data)[b].status = MATCHED; |
| 2453 | evenToMatched(b, tree); |
| 2454 | } else if ((*_blossom_data)[b].status == ODD) { |
| 2455 | (*_blossom_data)[b].status = MATCHED; |
| 2456 | oddToMatched(b); |
| 2457 | } |
| 2458 | } |
| 2459 | _tree_set->eraseClass(tree); |
| 2460 | } |
| 2461 | |
| 2462 | void augmentOnEdge(const Edge& edge) { |
| 2463 | |
| 2464 | int left = _blossom_set->find(_graph.u(edge)); |
| 2465 | int right = _blossom_set->find(_graph.v(edge)); |
| 2466 | |
| 2467 | int left_tree = _tree_set->find(left); |
| 2468 | alternatePath(left, left_tree); |
| 2469 | destroyTree(left_tree); |
| 2470 | |
| 2471 | int right_tree = _tree_set->find(right); |
| 2472 | alternatePath(right, right_tree); |
| 2473 | destroyTree(right_tree); |
| 2474 | |
| 2475 | (*_blossom_data)[left].next = _graph.direct(edge, true); |
| 2476 | (*_blossom_data)[right].next = _graph.direct(edge, false); |
| 2477 | } |
| 2478 | |
| 2479 | void extendOnArc(const Arc& arc) { |
| 2480 | int base = _blossom_set->find(_graph.target(arc)); |
| 2481 | int tree = _tree_set->find(base); |
| 2482 | |
| 2483 | int odd = _blossom_set->find(_graph.source(arc)); |
| 2484 | _tree_set->insert(odd, tree); |
| 2485 | (*_blossom_data)[odd].status = ODD; |
| 2486 | matchedToOdd(odd); |
| 2487 | (*_blossom_data)[odd].pred = arc; |
| 2488 | |
| 2489 | int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
| 2490 | (*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
| 2491 | _tree_set->insert(even, tree); |
| 2492 | (*_blossom_data)[even].status = EVEN; |
| 2493 | matchedToEven(even, tree); |
| 2494 | } |
| 2495 | |
| 2496 | void shrinkOnEdge(const Edge& edge, int tree) { |
| 2497 | int nca = -1; |
| 2498 | std::vector<int> left_path, right_path; |
| 2499 | |
| 2500 | { |
| 2501 | std::set<int> left_set, right_set; |
| 2502 | int left = _blossom_set->find(_graph.u(edge)); |
| 2503 | left_path.push_back(left); |
| 2504 | left_set.insert(left); |
| 2505 | |
| 2506 | int right = _blossom_set->find(_graph.v(edge)); |
| 2507 | right_path.push_back(right); |
| 2508 | right_set.insert(right); |
| 2509 | |
| 2510 | while (true) { |
| 2511 | |
| 2512 | if ((*_blossom_data)[left].pred == INVALID) break; |
| 2513 | |
| 2514 | left = |
| 2515 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| 2516 | left_path.push_back(left); |
| 2517 | left = |
| 2518 | _blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
| 2519 | left_path.push_back(left); |
| 2520 | |
| 2521 | left_set.insert(left); |
| 2522 | |
| 2523 | if (right_set.find(left) != right_set.end()) { |
| 2524 | nca = left; |
| 2525 | break; |
| 2526 | } |
| 2527 | |
| 2528 | if ((*_blossom_data)[right].pred == INVALID) break; |
| 2529 | |
| 2530 | right = |
| 2531 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| 2532 | right_path.push_back(right); |
| 2533 | right = |
| 2534 | _blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
| 2535 | right_path.push_back(right); |
| 2536 | |
| 2537 | right_set.insert(right); |
| 2538 | |
| 2539 | if (left_set.find(right) != left_set.end()) { |
| 2540 | nca = right; |
| 2541 | break; |
| 2542 | } |
| 2543 | |
| 2544 | } |
| 2545 | |
| 2546 | if (nca == -1) { |
| 2547 | if ((*_blossom_data)[left].pred == INVALID) { |
| 2548 | nca = right; |
| 2549 | while (left_set.find(nca) == left_set.end()) { |
| 2550 | nca = |
| 2551 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 2552 | right_path.push_back(nca); |
| 2553 | nca = |
| 2554 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 2555 | right_path.push_back(nca); |
| 2556 | } |
| 2557 | } else { |
| 2558 | nca = left; |
| 2559 | while (right_set.find(nca) == right_set.end()) { |
| 2560 | nca = |
| 2561 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 2562 | left_path.push_back(nca); |
| 2563 | nca = |
| 2564 | _blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
| 2565 | left_path.push_back(nca); |
| 2566 | } |
| 2567 | } |
| 2568 | } |
| 2569 | } |
| 2570 | |
| 2571 | std::vector<int> subblossoms; |
| 2572 | Arc prev; |
| 2573 | |
| 2574 | prev = _graph.direct(edge, true); |
| 2575 | for (int i = 0; left_path[i] != nca; i += 2) { |
| 2576 | subblossoms.push_back(left_path[i]); |
| 2577 | (*_blossom_data)[left_path[i]].next = prev; |
| 2578 | _tree_set->erase(left_path[i]); |
| 2579 | |
| 2580 | subblossoms.push_back(left_path[i + 1]); |
| 2581 | (*_blossom_data)[left_path[i + 1]].status = EVEN; |
| 2582 | oddToEven(left_path[i + 1], tree); |
| 2583 | _tree_set->erase(left_path[i + 1]); |
| 2584 | prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
| 2585 | } |
| 2586 | |
| 2587 | int k = 0; |
| 2588 | while (right_path[k] != nca) ++k; |
| 2589 | |
| 2590 | subblossoms.push_back(nca); |
| 2591 | (*_blossom_data)[nca].next = prev; |
| 2592 | |
| 2593 | for (int i = k - 2; i >= 0; i -= 2) { |
| 2594 | subblossoms.push_back(right_path[i + 1]); |
| 2595 | (*_blossom_data)[right_path[i + 1]].status = EVEN; |
| 2596 | oddToEven(right_path[i + 1], tree); |
| 2597 | _tree_set->erase(right_path[i + 1]); |
| 2598 | |
| 2599 | (*_blossom_data)[right_path[i + 1]].next = |
| 2600 | (*_blossom_data)[right_path[i + 1]].pred; |
| 2601 | |
| 2602 | subblossoms.push_back(right_path[i]); |
| 2603 | _tree_set->erase(right_path[i]); |
| 2604 | } |
| 2605 | |
| 2606 | int surface = |
| 2607 | _blossom_set->join(subblossoms.begin(), subblossoms.end()); |
| 2608 | |
| 2609 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| 2610 | if (!_blossom_set->trivial(subblossoms[i])) { |
| 2611 | (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
| 2612 | } |
| 2613 | (*_blossom_data)[subblossoms[i]].status = MATCHED; |
| 2614 | } |
| 2615 | |
| 2616 | (*_blossom_data)[surface].pot = -2 * _delta_sum; |
| 2617 | (*_blossom_data)[surface].offset = 0; |
| 2618 | (*_blossom_data)[surface].status = EVEN; |
| 2619 | (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
| 2620 | (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
| 2621 | |
| 2622 | _tree_set->insert(surface, tree); |
| 2623 | _tree_set->erase(nca); |
| 2624 | } |
| 2625 | |
| 2626 | void splitBlossom(int blossom) { |
| 2627 | Arc next = (*_blossom_data)[blossom].next; |
| 2628 | Arc pred = (*_blossom_data)[blossom].pred; |
| 2629 | |
| 2630 | int tree = _tree_set->find(blossom); |
| 2631 | |
| 2632 | (*_blossom_data)[blossom].status = MATCHED; |
| 2633 | oddToMatched(blossom); |
| 2634 | if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
| 2635 | _delta2->erase(blossom); |
| 2636 | } |
| 2637 | |
| 2638 | std::vector<int> subblossoms; |
| 2639 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 2640 | |
| 2641 | Value offset = (*_blossom_data)[blossom].offset; |
| 2642 | int b = _blossom_set->find(_graph.source(pred)); |
| 2643 | int d = _blossom_set->find(_graph.source(next)); |
| 2644 | |
| 2645 | int ib = -1, id = -1; |
| 2646 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| 2647 | if (subblossoms[i] == b) ib = i; |
| 2648 | if (subblossoms[i] == d) id = i; |
| 2649 | |
| 2650 | (*_blossom_data)[subblossoms[i]].offset = offset; |
| 2651 | if (!_blossom_set->trivial(subblossoms[i])) { |
| 2652 | (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
| 2653 | } |
| 2654 | if (_blossom_set->classPrio(subblossoms[i]) != |
| 2655 | std::numeric_limits<Value>::max()) { |
| 2656 | _delta2->push(subblossoms[i], |
| 2657 | _blossom_set->classPrio(subblossoms[i]) - |
| 2658 | (*_blossom_data)[subblossoms[i]].offset); |
| 2659 | } |
| 2660 | } |
| 2661 | |
| 2662 | if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
| 2663 | for (int i = (id + 1) % subblossoms.size(); |
| 2664 | i != ib; i = (i + 2) % subblossoms.size()) { |
| 2665 | int sb = subblossoms[i]; |
| 2666 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2667 | (*_blossom_data)[sb].next = |
| 2668 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 2669 | } |
| 2670 | |
| 2671 | for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
| 2672 | int sb = subblossoms[i]; |
| 2673 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2674 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 2675 | |
| 2676 | (*_blossom_data)[sb].status = ODD; |
| 2677 | matchedToOdd(sb); |
| 2678 | _tree_set->insert(sb, tree); |
| 2679 | (*_blossom_data)[sb].pred = pred; |
| 2680 | (*_blossom_data)[sb].next = |
| 2681 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 2682 | |
| 2683 | pred = (*_blossom_data)[ub].next; |
| 2684 | |
| 2685 | (*_blossom_data)[tb].status = EVEN; |
| 2686 | matchedToEven(tb, tree); |
| 2687 | _tree_set->insert(tb, tree); |
| 2688 | (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| 2689 | } |
| 2690 | |
| 2691 | (*_blossom_data)[subblossoms[id]].status = ODD; |
| 2692 | matchedToOdd(subblossoms[id]); |
| 2693 | _tree_set->insert(subblossoms[id], tree); |
| 2694 | (*_blossom_data)[subblossoms[id]].next = next; |
| 2695 | (*_blossom_data)[subblossoms[id]].pred = pred; |
| 2696 | |
| 2697 | } else { |
| 2698 | |
| 2699 | for (int i = (ib + 1) % subblossoms.size(); |
| 2700 | i != id; i = (i + 2) % subblossoms.size()) { |
| 2701 | int sb = subblossoms[i]; |
| 2702 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2703 | (*_blossom_data)[sb].next = |
| 2704 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 2705 | } |
| 2706 | |
| 2707 | for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
| 2708 | int sb = subblossoms[i]; |
| 2709 | int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 2710 | int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 2711 | |
| 2712 | (*_blossom_data)[sb].status = ODD; |
| 2713 | matchedToOdd(sb); |
| 2714 | _tree_set->insert(sb, tree); |
| 2715 | (*_blossom_data)[sb].next = next; |
| 2716 | (*_blossom_data)[sb].pred = |
| 2717 | _graph.oppositeArc((*_blossom_data)[tb].next); |
| 2718 | |
| 2719 | (*_blossom_data)[tb].status = EVEN; |
| 2720 | matchedToEven(tb, tree); |
| 2721 | _tree_set->insert(tb, tree); |
| 2722 | (*_blossom_data)[tb].pred = |
| 2723 | (*_blossom_data)[tb].next = |
| 2724 | _graph.oppositeArc((*_blossom_data)[ub].next); |
| 2725 | next = (*_blossom_data)[ub].next; |
| 2726 | } |
| 2727 | |
| 2728 | (*_blossom_data)[subblossoms[ib]].status = ODD; |
| 2729 | matchedToOdd(subblossoms[ib]); |
| 2730 | _tree_set->insert(subblossoms[ib], tree); |
| 2731 | (*_blossom_data)[subblossoms[ib]].next = next; |
| 2732 | (*_blossom_data)[subblossoms[ib]].pred = pred; |
| 2733 | } |
| 2734 | _tree_set->erase(blossom); |
| 2735 | } |
| 2736 | |
| 2737 | void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
| 2738 | if (_blossom_set->trivial(blossom)) { |
| 2739 | int bi = (*_node_index)[base]; |
| 2740 | Value pot = (*_node_data)[bi].pot; |
| 2741 | |
| 2742 | _matching->set(base, matching); |
| 2743 | _blossom_node_list.push_back(base); |
| 2744 | _node_potential->set(base, pot); |
| 2745 | } else { |
| 2746 | |
| 2747 | Value pot = (*_blossom_data)[blossom].pot; |
| 2748 | int bn = _blossom_node_list.size(); |
| 2749 | |
| 2750 | std::vector<int> subblossoms; |
| 2751 | _blossom_set->split(blossom, std::back_inserter(subblossoms)); |
| 2752 | int b = _blossom_set->find(base); |
| 2753 | int ib = -1; |
| 2754 | for (int i = 0; i < int(subblossoms.size()); ++i) { |
| 2755 | if (subblossoms[i] == b) { ib = i; break; } |
| 2756 | } |
| 2757 | |
| 2758 | for (int i = 1; i < int(subblossoms.size()); i += 2) { |
| 2759 | int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 2760 | int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 2761 | |
| 2762 | Arc m = (*_blossom_data)[tb].next; |
| 2763 | extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 2764 | extractBlossom(tb, _graph.source(m), m); |
| 2765 | } |
| 2766 | extractBlossom(subblossoms[ib], base, matching); |
| 2767 | |
| 2768 | int en = _blossom_node_list.size(); |
| 2769 | |
| 2770 | _blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 2771 | } |
| 2772 | } |
| 2773 | |
| 2774 | void extractMatching() { |
| 2775 | std::vector<int> blossoms; |
| 2776 | for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
| 2777 | blossoms.push_back(c); |
| 2778 | } |
| 2779 | |
| 2780 | for (int i = 0; i < int(blossoms.size()); ++i) { |
| 2781 | |
| 2782 | Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 2783 | (*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 2784 | for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 2785 | n != INVALID; ++n) { |
| 2786 | (*_node_data)[(*_node_index)[n]].pot -= offset; |
| 2787 | } |
| 2788 | |
| 2789 | Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 2790 | Node base = _graph.source(matching); |
| 2791 | extractBlossom(blossoms[i], base, matching); |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | public: |
| 2796 | |
| 2797 | /// \brief Constructor |
| 2798 | /// |
| 2799 | /// Constructor. |
| 2800 | MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
| 2801 | : _graph(graph), _weight(weight), _matching(0), |
| 2802 | _node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 2803 | _node_num(0), _blossom_num(0), |
| 2804 | |
| 2805 | _blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 2806 | _node_index(0), _node_heap_index(0), _node_data(0), |
| 2807 | _tree_set_index(0), _tree_set(0), |
| 2808 | |
| 2809 | _delta2_index(0), _delta2(0), |
| 2810 | _delta3_index(0), _delta3(0), |
| 2811 | _delta4_index(0), _delta4(0), |
| 2812 | |
| 2813 | _delta_sum() {} |
| 2814 | |
| 2815 | ~MaxWeightedPerfectMatching() { |
| 2816 | destroyStructures(); |
| 2817 | } |
| 2818 | |
| 2819 | /// \name Execution control |
| 2820 | /// The simplest way to execute the algorithm is to use the member |
| 2821 | /// \c run() member function. |
| 2822 | |
| 2823 | ///@{ |
| 2824 | |
| 2825 | /// \brief Initialize the algorithm |
| 2826 | /// |
| 2827 | /// Initialize the algorithm |
| 2828 | void init() { |
| 2829 | createStructures(); |
| 2830 | |
| 2831 | for (ArcIt e(_graph); e != INVALID; ++e) { |
| 2832 | _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP); |
| 2833 | } |
| 2834 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| 2835 | _delta3_index->set(e, _delta3->PRE_HEAP); |
| 2836 | } |
| 2837 | for (int i = 0; i < _blossom_num; ++i) { |
| 2838 | _delta2_index->set(i, _delta2->PRE_HEAP); |
| 2839 | _delta4_index->set(i, _delta4->PRE_HEAP); |
| 2840 | } |
| 2841 | |
| 2842 | int index = 0; |
| 2843 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 2844 | Value max = - std::numeric_limits<Value>::max(); |
| 2845 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
| 2846 | if (_graph.target(e) == n) continue; |
| 2847 | if ((dualScale * _weight[e]) / 2 > max) { |
| 2848 | max = (dualScale * _weight[e]) / 2; |
| 2849 | } |
| 2850 | } |
| 2851 | _node_index->set(n, index); |
| 2852 | (*_node_data)[index].pot = max; |
| 2853 | int blossom = |
| 2854 | _blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 2855 | |
| 2856 | _tree_set->insert(blossom); |
| 2857 | |
| 2858 | (*_blossom_data)[blossom].status = EVEN; |
| 2859 | (*_blossom_data)[blossom].pred = INVALID; |
| 2860 | (*_blossom_data)[blossom].next = INVALID; |
| 2861 | (*_blossom_data)[blossom].pot = 0; |
| 2862 | (*_blossom_data)[blossom].offset = 0; |
| 2863 | ++index; |
| 2864 | } |
| 2865 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
| 2866 | int si = (*_node_index)[_graph.u(e)]; |
| 2867 | int ti = (*_node_index)[_graph.v(e)]; |
| 2868 | if (_graph.u(e) != _graph.v(e)) { |
| 2869 | _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 2870 | dualScale * _weight[e]) / 2); |
| 2871 | } |
| 2872 | } |
| 2873 | } |
| 2874 | |
| 2875 | /// \brief Starts the algorithm |
| 2876 | /// |
| 2877 | /// Starts the algorithm |
| 2878 | bool start() { |
| 2879 | enum OpType { |
| 2880 | D2, D3, D4 |
| 2881 | }; |
| 2882 | |
| 2883 | int unmatched = _node_num; |
| 2884 | while (unmatched > 0) { |
| 2885 | Value d2 = !_delta2->empty() ? |
| 2886 | _delta2->prio() : std::numeric_limits<Value>::max(); |
| 2887 | |
| 2888 | Value d3 = !_delta3->empty() ? |
| 2889 | _delta3->prio() : std::numeric_limits<Value>::max(); |
| 2890 | |
| 2891 | Value d4 = !_delta4->empty() ? |
| 2892 | _delta4->prio() : std::numeric_limits<Value>::max(); |
| 2893 | |
| 2894 | _delta_sum = d2; OpType ot = D2; |
| 2895 | if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
| 2896 | if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
| 2897 | |
| 2898 | if (_delta_sum == std::numeric_limits<Value>::max()) { |
| 2899 | return false; |
| 2900 | } |
| 2901 | |
| 2902 | switch (ot) { |
| 2903 | case D2: |
| 2904 | { |
| 2905 | int blossom = _delta2->top(); |
| 2906 | Node n = _blossom_set->classTop(blossom); |
| 2907 | Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 2908 | extendOnArc(e); |
| 2909 | } |
| 2910 | break; |
| 2911 | case D3: |
| 2912 | { |
| 2913 | Edge e = _delta3->top(); |
| 2914 | |
| 2915 | int left_blossom = _blossom_set->find(_graph.u(e)); |
| 2916 | int right_blossom = _blossom_set->find(_graph.v(e)); |
| 2917 | |
| 2918 | if (left_blossom == right_blossom) { |
| 2919 | _delta3->pop(); |
| 2920 | } else { |
| 2921 | int left_tree = _tree_set->find(left_blossom); |
| 2922 | int right_tree = _tree_set->find(right_blossom); |
| 2923 | |
| 2924 | if (left_tree == right_tree) { |
| 2925 | shrinkOnEdge(e, left_tree); |
| 2926 | } else { |
| 2927 | augmentOnEdge(e); |
| 2928 | unmatched -= 2; |
| 2929 | } |
| 2930 | } |
| 2931 | } break; |
| 2932 | case D4: |
| 2933 | splitBlossom(_delta4->top()); |
| 2934 | break; |
| 2935 | } |
| 2936 | } |
| 2937 | extractMatching(); |
| 2938 | return true; |
| 2939 | } |
| 2940 | |
| 2941 | /// \brief Runs %MaxWeightedPerfectMatching algorithm. |
| 2942 | /// |
| 2943 | /// This method runs the %MaxWeightedPerfectMatching algorithm. |
| 2944 | /// |
| 2945 | /// \note mwm.run() is just a shortcut of the following code. |
| 2946 | /// \code |
| 2947 | /// mwm.init(); |
| 2948 | /// mwm.start(); |
| 2949 | /// \endcode |
| 2950 | bool run() { |
| 2951 | init(); |
| 2952 | return start(); |
| 2953 | } |
| 2954 | |
| 2955 | /// @} |
| 2956 | |
| 2957 | /// \name Primal solution |
| 2958 | /// Functions for get the primal solution, ie. the matching. |
| 2959 | |
| 2960 | /// @{ |
| 2961 | |
| 2962 | /// \brief Returns the matching value. |
| 2963 | /// |
| 2964 | /// Returns the matching value. |
| 2965 | Value matchingValue() const { |
| 2966 | Value sum = 0; |
| 2967 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 2968 | if ((*_matching)[n] != INVALID) { |
| 2969 | sum += _weight[(*_matching)[n]]; |
| 2970 | } |
| 2971 | } |
| 2972 | return sum /= 2; |
| 2973 | } |
| 2974 | |
| 2975 | /// \brief Returns true when the edge is in the matching. |
| 2976 | /// |
| 2977 | /// Returns true when the edge is in the matching. |
| 2978 | bool matching(const Edge& edge) const { |
| 2979 | return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
| 2980 | } |
| 2981 | |
| 2982 | /// \brief Returns the incident matching edge. |
| 2983 | /// |
| 2984 | /// Returns the incident matching arc from given edge. |
| 2985 | Arc matching(const Node& node) const { |
| 2986 | return (*_matching)[node]; |
| 2987 | } |
| 2988 | |
| 2989 | /// \brief Returns the mate of the node. |
| 2990 | /// |
| 2991 | /// Returns the adjancent node in a mathcing arc. |
| 2992 | Node mate(const Node& node) const { |
| 2993 | return _graph.target((*_matching)[node]); |
| 2994 | } |
| 2995 | |
| 2996 | /// @} |
| 2997 | |
| 2998 | /// \name Dual solution |
| 2999 | /// Functions for get the dual solution. |
| 3000 | |
| 3001 | /// @{ |
| 3002 | |
| 3003 | /// \brief Returns the value of the dual solution. |
| 3004 | /// |
| 3005 | /// Returns the value of the dual solution. It should be equal to |
| 3006 | /// the primal value scaled by \ref dualScale "dual scale". |
| 3007 | Value dualValue() const { |
| 3008 | Value sum = 0; |
| 3009 | for (NodeIt n(_graph); n != INVALID; ++n) { |
| 3010 | sum += nodeValue(n); |
| 3011 | } |
| 3012 | for (int i = 0; i < blossomNum(); ++i) { |
| 3013 | sum += blossomValue(i) * (blossomSize(i) / 2); |
| 3014 | } |
| 3015 | return sum; |
| 3016 | } |
| 3017 | |
| 3018 | /// \brief Returns the value of the node. |
| 3019 | /// |
| 3020 | /// Returns the the value of the node. |
| 3021 | Value nodeValue(const Node& n) const { |
| 3022 | return (*_node_potential)[n]; |
| 3023 | } |
| 3024 | |
| 3025 | /// \brief Returns the number of the blossoms in the basis. |
| 3026 | /// |
| 3027 | /// Returns the number of the blossoms in the basis. |
| 3028 | /// \see BlossomIt |
| 3029 | int blossomNum() const { |
| 3030 | return _blossom_potential.size(); |
| 3031 | } |
| 3032 | |
| 3033 | |
| 3034 | /// \brief Returns the number of the nodes in the blossom. |
| 3035 | /// |
| 3036 | /// Returns the number of the nodes in the blossom. |
| 3037 | int blossomSize(int k) const { |
| 3038 | return _blossom_potential[k].end - _blossom_potential[k].begin; |
| 3039 | } |
| 3040 | |
| 3041 | /// \brief Returns the value of the blossom. |
| 3042 | /// |
| 3043 | /// Returns the the value of the blossom. |
| 3044 | /// \see BlossomIt |
| 3045 | Value blossomValue(int k) const { |
| 3046 | return _blossom_potential[k].value; |
| 3047 | } |
| 3048 | |
| 3049 | /// \brief Lemon iterator for get the items of the blossom. |
| 3050 | /// |
| 3051 | /// Lemon iterator for get the nodes of the blossom. This class |
| 3052 | /// provides a common style lemon iterator which gives back a |
| 3053 | /// subset of the nodes. |
| 3054 | class BlossomIt { |
| 3055 | public: |
| 3056 | |
| 3057 | /// \brief Constructor. |
| 3058 | /// |
| 3059 | /// Constructor for get the nodes of the variable. |
| 3060 | BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
| 3061 | : _algorithm(&algorithm) |
| 3062 | { |
| 3063 | _index = _algorithm->_blossom_potential[variable].begin; |
| 3064 | _last = _algorithm->_blossom_potential[variable].end; |
| 3065 | } |
| 3066 | |
| 3067 | /// \brief Conversion to node. |
| 3068 | /// |
| 3069 | /// Conversion to node. |
| 3070 | operator Node() const { |
| 3071 | return _algorithm->_blossom_node_list[_index]; |
| 3072 | } |
| 3073 | |
| 3074 | /// \brief Increment operator. |
| 3075 | /// |
| 3076 | /// Increment operator. |
| 3077 | BlossomIt& operator++() { |
| 3078 | ++_index; |
| 3079 | return *this; |
| 3080 | } |
| 3081 | |
| 3082 | /// \brief Validity checking |
| 3083 | /// |
| 3084 | /// Checks whether the iterator is invalid. |
| 3085 | bool operator==(Invalid) const { return _index == _last; } |
| 3086 | |
| 3087 | /// \brief Validity checking |
| 3088 | /// |
| 3089 | /// Checks whether the iterator is valid. |
| 3090 | bool operator!=(Invalid) const { return _index != _last; } |
| 3091 | |
| 3092 | private: |
| 3093 | const MaxWeightedPerfectMatching* _algorithm; |
| 3094 | int _last; |
| 3095 | int _index; |
| 3096 | }; |
| 3097 | |
| 3098 | /// @} |
| 3099 | |
| 3100 | }; |
| 3101 | |
| 3102 | |
| 3103 | } //END OF NAMESPACE LEMON |
| 3104 | |
| 3105 | #endif //LEMON_MAX_MATCHING_H |