| 1 | /* -*- C++ -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
| 4 | * |
| 5 | * Copyright (C) 2003-2008 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_BELMANN_FORD_H |
| 20 | #define LEMON_BELMANN_FORD_H |
| 21 | |
| 22 | /// \ingroup shortest_path |
| 23 | /// \file |
| 24 | /// \brief Bellman-Ford algorithm. |
| 25 | /// |
| 26 | |
| 27 | #include <lemon/bits/path_dump.h> |
| 28 | #include <lemon/core.h> |
| 29 | #include <lemon/error.h> |
| 30 | #include <lemon/maps.h> |
| 31 | |
| 32 | #include <limits> |
| 33 | |
| 34 | namespace lemon { |
| 35 | |
| 36 | /// \brief Default OperationTraits for the BellmanFord algorithm class. |
| 37 | /// |
| 38 | /// It defines all computational operations and constants which are |
| 39 | /// used in the Bellman-Ford algorithm. The default implementation |
| 40 | /// is based on the numeric_limits class. If the numeric type does not |
| 41 | /// have infinity value then the maximum value is used as extremal |
| 42 | /// infinity value. |
| 43 | template < |
| 44 | typename Value, |
| 45 | bool has_infinity = std::numeric_limits<Value>::has_infinity> |
| 46 | struct BellmanFordDefaultOperationTraits { |
| 47 | /// \brief Gives back the zero value of the type. |
| 48 | static Value zero() { |
| 49 | return static_cast<Value>(0); |
| 50 | } |
| 51 | /// \brief Gives back the positive infinity value of the type. |
| 52 | static Value infinity() { |
| 53 | return std::numeric_limits<Value>::infinity(); |
| 54 | } |
| 55 | /// \brief Gives back the sum of the given two elements. |
| 56 | static Value plus(const Value& left, const Value& right) { |
| 57 | return left + right; |
| 58 | } |
| 59 | /// \brief Gives back true only if the first value less than the second. |
| 60 | static bool less(const Value& left, const Value& right) { |
| 61 | return left < right; |
| 62 | } |
| 63 | }; |
| 64 | |
| 65 | template <typename Value> |
| 66 | struct BellmanFordDefaultOperationTraits<Value, false> { |
| 67 | static Value zero() { |
| 68 | return static_cast<Value>(0); |
| 69 | } |
| 70 | static Value infinity() { |
| 71 | return std::numeric_limits<Value>::max(); |
| 72 | } |
| 73 | static Value plus(const Value& left, const Value& right) { |
| 74 | if (left == infinity() || right == infinity()) return infinity(); |
| 75 | return left + right; |
| 76 | } |
| 77 | static bool less(const Value& left, const Value& right) { |
| 78 | return left < right; |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | /// \brief Default traits class of BellmanFord class. |
| 83 | /// |
| 84 | /// Default traits class of BellmanFord class. |
| 85 | /// \param _Digraph Digraph type. |
| 86 | /// \param _LegthMap Type of length map. |
| 87 | template<class _Digraph, class _LengthMap> |
| 88 | struct BellmanFordDefaultTraits { |
| 89 | /// The digraph type the algorithm runs on. |
| 90 | typedef _Digraph Digraph; |
| 91 | |
| 92 | /// \brief The type of the map that stores the arc lengths. |
| 93 | /// |
| 94 | /// The type of the map that stores the arc lengths. |
| 95 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 96 | typedef _LengthMap LengthMap; |
| 97 | |
| 98 | // The type of the length of the arcs. |
| 99 | typedef typename _LengthMap::Value Value; |
| 100 | |
| 101 | /// \brief Operation traits for Bellman-Ford algorithm. |
| 102 | /// |
| 103 | /// It defines the infinity type on the given Value type |
| 104 | /// and the used operation. |
| 105 | /// \see BellmanFordDefaultOperationTraits |
| 106 | typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 107 | |
| 108 | /// \brief The type of the map that stores the last arcs of the |
| 109 | /// shortest paths. |
| 110 | /// |
| 111 | /// The type of the map that stores the last |
| 112 | /// arcs of the shortest paths. |
| 113 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 114 | /// |
| 115 | typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap; |
| 116 | |
| 117 | /// \brief Instantiates a PredMap. |
| 118 | /// |
| 119 | /// This function instantiates a \ref PredMap. |
| 120 | /// \param digraph is the digraph, to which we would like to define the PredMap. |
| 121 | static PredMap *createPredMap(const _Digraph& digraph) { |
| 122 | return new PredMap(digraph); |
| 123 | } |
| 124 | |
| 125 | /// \brief The type of the map that stores the dists of the nodes. |
| 126 | /// |
| 127 | /// The type of the map that stores the dists of the nodes. |
| 128 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 129 | /// |
| 130 | typedef typename Digraph::template NodeMap<typename _LengthMap::Value> |
| 131 | DistMap; |
| 132 | |
| 133 | /// \brief Instantiates a DistMap. |
| 134 | /// |
| 135 | /// This function instantiates a \ref DistMap. |
| 136 | /// \param digraph is the digraph, to which we would like to define the |
| 137 | /// \ref DistMap |
| 138 | static DistMap *createDistMap(const _Digraph& digraph) { |
| 139 | return new DistMap(digraph); |
| 140 | } |
| 141 | |
| 142 | }; |
| 143 | |
| 144 | /// \brief %BellmanFord algorithm class. |
| 145 | /// |
| 146 | /// \ingroup shortest_path |
| 147 | /// This class provides an efficient implementation of \c Bellman-Ford |
| 148 | /// algorithm. The arc lengths are passed to the algorithm using a |
| 149 | /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| 150 | /// kind of length. |
| 151 | /// |
| 152 | /// The Bellman-Ford algorithm solves the shortest path from one node |
| 153 | /// problem when the arcs can have negative length but the digraph should |
| 154 | /// not contain cycles with negative sum of length. If we can assume |
| 155 | /// that all arc is non-negative in the digraph then the dijkstra algorithm |
| 156 | /// should be used rather. |
| 157 | /// |
| 158 | /// The maximal time complexity of the algorithm is \f$ O(ne) \f$. |
| 159 | /// |
| 160 | /// The type of the length is determined by the |
| 161 | /// \ref concepts::ReadMap::Value "Value" of the length map. |
| 162 | /// |
| 163 | /// \param _Digraph The digraph type the algorithm runs on. The default value |
| 164 | /// is \ref ListDigraph. The value of _Digraph is not used directly by |
| 165 | /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
| 166 | /// \param _LengthMap This read-only ArcMap determines the lengths of the |
| 167 | /// arcs. The default map type is \ref concepts::Digraph::ArcMap |
| 168 | /// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly |
| 169 | /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
| 170 | /// \param _Traits Traits class to set various data types used by the |
| 171 | /// algorithm. The default traits class is \ref BellmanFordDefaultTraits |
| 172 | /// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref |
| 173 | /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits |
| 174 | /// class. |
| 175 | #ifdef DOXYGEN |
| 176 | template <typename _Digraph, typename _LengthMap, typename _Traits> |
| 177 | #else |
| 178 | template <typename _Digraph, |
| 179 | typename _LengthMap=typename _Digraph::template ArcMap<int>, |
| 180 | typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> > |
| 181 | #endif |
| 182 | class BellmanFord { |
| 183 | public: |
| 184 | |
| 185 | typedef _Traits Traits; |
| 186 | ///The type of the underlying digraph. |
| 187 | typedef typename _Traits::Digraph Digraph; |
| 188 | |
| 189 | typedef typename Digraph::Node Node; |
| 190 | typedef typename Digraph::NodeIt NodeIt; |
| 191 | typedef typename Digraph::Arc Arc; |
| 192 | typedef typename Digraph::OutArcIt OutArcIt; |
| 193 | |
| 194 | /// \brief The type of the length of the arcs. |
| 195 | typedef typename _Traits::LengthMap::Value Value; |
| 196 | /// \brief The type of the map that stores the arc lengths. |
| 197 | typedef typename _Traits::LengthMap LengthMap; |
| 198 | /// \brief The type of the map that stores the last |
| 199 | /// arcs of the shortest paths. |
| 200 | typedef typename _Traits::PredMap PredMap; |
| 201 | /// \brief The type of the map that stores the dists of the nodes. |
| 202 | typedef typename _Traits::DistMap DistMap; |
| 203 | /// \brief The operation traits. |
| 204 | typedef typename _Traits::OperationTraits OperationTraits; |
| 205 | private: |
| 206 | /// Pointer to the underlying digraph. |
| 207 | const Digraph *digraph; |
| 208 | /// Pointer to the length map |
| 209 | const LengthMap *length; |
| 210 | ///Pointer to the map of predecessors arcs. |
| 211 | PredMap *_pred; |
| 212 | ///Indicates if \ref _pred is locally allocated (\c true) or not. |
| 213 | bool local_pred; |
| 214 | ///Pointer to the map of distances. |
| 215 | DistMap *_dist; |
| 216 | ///Indicates if \ref _dist is locally allocated (\c true) or not. |
| 217 | bool local_dist; |
| 218 | |
| 219 | typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 220 | MaskMap *_mask; |
| 221 | |
| 222 | std::vector<Node> _process; |
| 223 | |
| 224 | /// Creates the maps if necessary. |
| 225 | void create_maps() { |
| 226 | if(!_pred) { |
| 227 | local_pred = true; |
| 228 | _pred = Traits::createPredMap(*digraph); |
| 229 | } |
| 230 | if(!_dist) { |
| 231 | local_dist = true; |
| 232 | _dist = Traits::createDistMap(*digraph); |
| 233 | } |
| 234 | _mask = new MaskMap(*digraph, false); |
| 235 | } |
| 236 | |
| 237 | public : |
| 238 | |
| 239 | typedef BellmanFord Create; |
| 240 | |
| 241 | /// \name Named template parameters |
| 242 | |
| 243 | ///@{ |
| 244 | |
| 245 | template <class T> |
| 246 | struct DefPredMapTraits : public Traits { |
| 247 | typedef T PredMap; |
| 248 | static PredMap *createPredMap(const Digraph&) { |
| 249 | LEMON_ASSERT(false, "PredMap is not initialized"); |
| 250 | return 0; // ignore warnings |
| 251 | } |
| 252 | }; |
| 253 | |
| 254 | /// \brief \ref named-templ-param "Named parameter" for setting PredMap |
| 255 | /// type |
| 256 | /// \ref named-templ-param "Named parameter" for setting PredMap type |
| 257 | /// |
| 258 | template <class T> |
| 259 | struct SetPredMap |
| 260 | : public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > { |
| 261 | typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
| 262 | }; |
| 263 | |
| 264 | template <class T> |
| 265 | struct DefDistMapTraits : public Traits { |
| 266 | typedef T DistMap; |
| 267 | static DistMap *createDistMap(const Digraph&) { |
| 268 | LEMON_ASSERT(false, "DistMap is not initialized"); |
| 269 | return 0; // ignore warnings |
| 270 | } |
| 271 | }; |
| 272 | |
| 273 | /// \brief \ref named-templ-param "Named parameter" for setting DistMap |
| 274 | /// type |
| 275 | /// |
| 276 | /// \ref named-templ-param "Named parameter" for setting DistMap type |
| 277 | /// |
| 278 | template <class T> |
| 279 | struct SetDistMap |
| 280 | : public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > { |
| 281 | typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
| 282 | }; |
| 283 | |
| 284 | template <class T> |
| 285 | struct DefOperationTraitsTraits : public Traits { |
| 286 | typedef T OperationTraits; |
| 287 | }; |
| 288 | |
| 289 | /// \brief \ref named-templ-param "Named parameter" for setting |
| 290 | /// OperationTraits type |
| 291 | /// |
| 292 | /// \ref named-templ-param "Named parameter" for setting OperationTraits |
| 293 | /// type |
| 294 | template <class T> |
| 295 | struct SetOperationTraits |
| 296 | : public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
| 297 | typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > |
| 298 | Create; |
| 299 | }; |
| 300 | |
| 301 | ///@} |
| 302 | |
| 303 | protected: |
| 304 | |
| 305 | BellmanFord() {} |
| 306 | |
| 307 | public: |
| 308 | |
| 309 | /// \brief Constructor. |
| 310 | /// |
| 311 | /// \param _graph the digraph the algorithm will run on. |
| 312 | /// \param _length the length map used by the algorithm. |
| 313 | BellmanFord(const Digraph& _graph, const LengthMap& _length) : |
| 314 | digraph(&_graph), length(&_length), |
| 315 | _pred(0), local_pred(false), |
| 316 | _dist(0), local_dist(false), _mask(0) {} |
| 317 | |
| 318 | ///Destructor. |
| 319 | ~BellmanFord() { |
| 320 | if(local_pred) delete _pred; |
| 321 | if(local_dist) delete _dist; |
| 322 | if(_mask) delete _mask; |
| 323 | } |
| 324 | |
| 325 | /// \brief Sets the length map. |
| 326 | /// |
| 327 | /// Sets the length map. |
| 328 | /// \return \c (*this) |
| 329 | BellmanFord &lengthMap(const LengthMap &m) { |
| 330 | length = &m; |
| 331 | return *this; |
| 332 | } |
| 333 | |
| 334 | /// \brief Sets the map storing the predecessor arcs. |
| 335 | /// |
| 336 | /// Sets the map storing the predecessor arcs. |
| 337 | /// If you don't use this function before calling \ref run(), |
| 338 | /// it will allocate one. The destuctor deallocates this |
| 339 | /// automatically allocated map, of course. |
| 340 | /// \return \c (*this) |
| 341 | BellmanFord &predMap(PredMap &m) { |
| 342 | if(local_pred) { |
| 343 | delete _pred; |
| 344 | local_pred=false; |
| 345 | } |
| 346 | _pred = &m; |
| 347 | return *this; |
| 348 | } |
| 349 | |
| 350 | /// \brief Sets the map storing the distances calculated by the algorithm. |
| 351 | /// |
| 352 | /// Sets the map storing the distances calculated by the algorithm. |
| 353 | /// If you don't use this function before calling \ref run(), |
| 354 | /// it will allocate one. The destuctor deallocates this |
| 355 | /// automatically allocated map, of course. |
| 356 | /// \return \c (*this) |
| 357 | BellmanFord &distMap(DistMap &m) { |
| 358 | if(local_dist) { |
| 359 | delete _dist; |
| 360 | local_dist=false; |
| 361 | } |
| 362 | _dist = &m; |
| 363 | return *this; |
| 364 | } |
| 365 | |
| 366 | /// \name Execution control |
| 367 | /// The simplest way to execute the algorithm is to use |
| 368 | /// one of the member functions called \c run(...). |
| 369 | /// \n |
| 370 | /// If you need more control on the execution, |
| 371 | /// first you must call \ref init(), then you can add several source nodes |
| 372 | /// with \ref addSource(). |
| 373 | /// Finally \ref start() will perform the actual path |
| 374 | /// computation. |
| 375 | |
| 376 | ///@{ |
| 377 | |
| 378 | /// \brief Initializes the internal data structures. |
| 379 | /// |
| 380 | /// Initializes the internal data structures. |
| 381 | void init(const Value value = OperationTraits::infinity()) { |
| 382 | create_maps(); |
| 383 | for (NodeIt it(*digraph); it != INVALID; ++it) { |
| 384 | _pred->set(it, INVALID); |
| 385 | _dist->set(it, value); |
| 386 | } |
| 387 | _process.clear(); |
| 388 | if (OperationTraits::less(value, OperationTraits::infinity())) { |
| 389 | for (NodeIt it(*digraph); it != INVALID; ++it) { |
| 390 | _process.push_back(it); |
| 391 | _mask->set(it, true); |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | /// \brief Adds a new source node. |
| 397 | /// |
| 398 | /// Adds a new source node. The optional second parameter is the |
| 399 | /// initial distance of the node. It just sets the distance of the |
| 400 | /// node to the given value. |
| 401 | void addSource(Node source, Value dst = OperationTraits::zero()) { |
| 402 | _dist->set(source, dst); |
| 403 | if (!(*_mask)[source]) { |
| 404 | _process.push_back(source); |
| 405 | _mask->set(source, true); |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | /// \brief Executes one round from the Bellman-Ford algorithm. |
| 410 | /// |
| 411 | /// If the algoritm calculated the distances in the previous round |
| 412 | /// exactly for all at most \f$ k \f$ length path lengths then it will |
| 413 | /// calculate the distances exactly for all at most \f$ k + 1 \f$ |
| 414 | /// length path lengths. With \f$ k \f$ iteration this function |
| 415 | /// calculates the at most \f$ k \f$ length path lengths. |
| 416 | /// |
| 417 | /// \warning The paths with limited arc number cannot be retrieved |
| 418 | /// easily with \ref path() or \ref predArc() functions. If you |
| 419 | /// need the shortest path and not just the distance you should store |
| 420 | /// after each iteration the \ref predMap() map and manually build |
| 421 | /// the path. |
| 422 | /// |
| 423 | /// \return \c true when the algorithm have not found more shorter |
| 424 | /// paths. |
| 425 | bool processNextRound() { |
| 426 | for (int i = 0; i < int(_process.size()); ++i) { |
| 427 | _mask->set(_process[i], false); |
| 428 | } |
| 429 | std::vector<Node> nextProcess; |
| 430 | std::vector<Value> values(_process.size()); |
| 431 | for (int i = 0; i < int(_process.size()); ++i) { |
| 432 | values[i] = (*_dist)[_process[i]]; |
| 433 | } |
| 434 | for (int i = 0; i < int(_process.size()); ++i) { |
| 435 | for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
| 436 | Node target = digraph->target(it); |
| 437 | Value relaxed = OperationTraits::plus(values[i], (*length)[it]); |
| 438 | if (OperationTraits::less(relaxed, (*_dist)[target])) { |
| 439 | _pred->set(target, it); |
| 440 | _dist->set(target, relaxed); |
| 441 | if (!(*_mask)[target]) { |
| 442 | _mask->set(target, true); |
| 443 | nextProcess.push_back(target); |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | _process.swap(nextProcess); |
| 449 | return _process.empty(); |
| 450 | } |
| 451 | |
| 452 | /// \brief Executes one weak round from the Bellman-Ford algorithm. |
| 453 | /// |
| 454 | /// If the algorithm calculated the distances in the |
| 455 | /// previous round at least for all at most k length paths then it will |
| 456 | /// calculate the distances at least for all at most k + 1 length paths. |
| 457 | /// This function does not make it possible to calculate strictly the |
| 458 | /// at most k length minimal paths, this is why it is |
| 459 | /// called just weak round. |
| 460 | /// \return \c true when the algorithm have not found more shorter paths. |
| 461 | bool processNextWeakRound() { |
| 462 | for (int i = 0; i < int(_process.size()); ++i) { |
| 463 | _mask->set(_process[i], false); |
| 464 | } |
| 465 | std::vector<Node> nextProcess; |
| 466 | for (int i = 0; i < int(_process.size()); ++i) { |
| 467 | for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
| 468 | Node target = digraph->target(it); |
| 469 | Value relaxed = |
| 470 | OperationTraits::plus((*_dist)[_process[i]], (*length)[it]); |
| 471 | if (OperationTraits::less(relaxed, (*_dist)[target])) { |
| 472 | _pred->set(target, it); |
| 473 | _dist->set(target, relaxed); |
| 474 | if (!(*_mask)[target]) { |
| 475 | _mask->set(target, true); |
| 476 | nextProcess.push_back(target); |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | } |
| 481 | _process.swap(nextProcess); |
| 482 | return _process.empty(); |
| 483 | } |
| 484 | |
| 485 | /// \brief Executes the algorithm. |
| 486 | /// |
| 487 | /// \pre init() must be called and at least one node should be added |
| 488 | /// with addSource() before using this function. |
| 489 | /// |
| 490 | /// This method runs the %BellmanFord algorithm from the root node(s) |
| 491 | /// in order to compute the shortest path to each node. The algorithm |
| 492 | /// computes |
| 493 | /// - The shortest path tree. |
| 494 | /// - The distance of each node from the root(s). |
| 495 | void start() { |
| 496 | int num = countNodes(*digraph) - 1; |
| 497 | for (int i = 0; i < num; ++i) { |
| 498 | if (processNextWeakRound()) break; |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | /// \brief Executes the algorithm and checks the negative cycles. |
| 503 | /// |
| 504 | /// \pre init() must be called and at least one node should be added |
| 505 | /// with addSource() before using this function. |
| 506 | /// |
| 507 | /// This method runs the %BellmanFord algorithm from the root node(s) |
| 508 | /// in order to compute the shortest path to each node. The algorithm |
| 509 | /// computes |
| 510 | /// - The shortest path tree. |
| 511 | /// - The distance of each node from the root(s). |
| 512 | /// |
| 513 | /// \return \c false if there is a negative cycle in the digraph. |
| 514 | bool checkedStart() { |
| 515 | int num = countNodes(*digraph); |
| 516 | for (int i = 0; i < num; ++i) { |
| 517 | if (processNextWeakRound()) return true; |
| 518 | } |
| 519 | return _process.empty(); |
| 520 | } |
| 521 | |
| 522 | /// \brief Executes the algorithm with path length limit. |
| 523 | /// |
| 524 | /// \pre init() must be called and at least one node should be added |
| 525 | /// with addSource() before using this function. |
| 526 | /// |
| 527 | /// This method runs the %BellmanFord algorithm from the root |
| 528 | /// node(s) in order to compute the shortest path lengths with at |
| 529 | /// most \c num arc. |
| 530 | /// |
| 531 | /// \warning The paths with limited arc number cannot be retrieved |
| 532 | /// easily with \ref path() or \ref predArc() functions. If you |
| 533 | /// need the shortest path and not just the distance you should store |
| 534 | /// after each iteration the \ref predMap() map and manually build |
| 535 | /// the path. |
| 536 | /// |
| 537 | /// The algorithm computes |
| 538 | /// - The predecessor arc from each node. |
| 539 | /// - The limited distance of each node from the root(s). |
| 540 | void limitedStart(int num) { |
| 541 | for (int i = 0; i < num; ++i) { |
| 542 | if (processNextRound()) break; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | /// \brief Runs %BellmanFord algorithm from node \c s. |
| 547 | /// |
| 548 | /// This method runs the %BellmanFord algorithm from a root node \c s |
| 549 | /// in order to compute the shortest path to each node. The algorithm |
| 550 | /// computes |
| 551 | /// - The shortest path tree. |
| 552 | /// - The distance of each node from the root. |
| 553 | /// |
| 554 | /// \note d.run(s) is just a shortcut of the following code. |
| 555 | ///\code |
| 556 | /// d.init(); |
| 557 | /// d.addSource(s); |
| 558 | /// d.start(); |
| 559 | ///\endcode |
| 560 | void run(Node s) { |
| 561 | init(); |
| 562 | addSource(s); |
| 563 | start(); |
| 564 | } |
| 565 | |
| 566 | /// \brief Runs %BellmanFord algorithm with limited path length |
| 567 | /// from node \c s. |
| 568 | /// |
| 569 | /// This method runs the %BellmanFord algorithm from a root node \c s |
| 570 | /// in order to compute the shortest path with at most \c len arcs |
| 571 | /// to each node. The algorithm computes |
| 572 | /// - The shortest path tree. |
| 573 | /// - The distance of each node from the root. |
| 574 | /// |
| 575 | /// \note d.run(s, num) is just a shortcut of the following code. |
| 576 | ///\code |
| 577 | /// d.init(); |
| 578 | /// d.addSource(s); |
| 579 | /// d.limitedStart(num); |
| 580 | ///\endcode |
| 581 | void run(Node s, int num) { |
| 582 | init(); |
| 583 | addSource(s); |
| 584 | limitedStart(num); |
| 585 | } |
| 586 | |
| 587 | ///@} |
| 588 | |
| 589 | /// \name Query Functions |
| 590 | /// The result of the %BellmanFord algorithm can be obtained using these |
| 591 | /// functions.\n |
| 592 | /// Before the use of these functions, |
| 593 | /// either run() or start() must be called. |
| 594 | |
| 595 | ///@{ |
| 596 | |
| 597 | /// \brief Lemon iterator for get the active nodes. |
| 598 | /// |
| 599 | /// Lemon iterator for get the active nodes. This class provides a |
| 600 | /// common style lemon iterator which gives back a subset of the |
| 601 | /// nodes. The iterated nodes are active in the algorithm after |
| 602 | /// the last phase so these should be checked in the next phase to |
| 603 | /// find augmenting arcs from these. |
| 604 | class ActiveIt { |
| 605 | public: |
| 606 | |
| 607 | /// \brief Constructor. |
| 608 | /// |
| 609 | /// Constructor for get the nodeset of the variable. |
| 610 | ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 611 | { |
| 612 | _index = _algorithm->_process.size() - 1; |
| 613 | } |
| 614 | |
| 615 | /// \brief Invalid constructor. |
| 616 | /// |
| 617 | /// Invalid constructor. |
| 618 | ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
| 619 | |
| 620 | /// \brief Conversion to node. |
| 621 | /// |
| 622 | /// Conversion to node. |
| 623 | operator Node() const { |
| 624 | return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 625 | } |
| 626 | |
| 627 | /// \brief Increment operator. |
| 628 | /// |
| 629 | /// Increment operator. |
| 630 | ActiveIt& operator++() { |
| 631 | --_index; |
| 632 | return *this; |
| 633 | } |
| 634 | |
| 635 | bool operator==(const ActiveIt& it) const { |
| 636 | return static_cast<Node>(*this) == static_cast<Node>(it); |
| 637 | } |
| 638 | bool operator!=(const ActiveIt& it) const { |
| 639 | return static_cast<Node>(*this) != static_cast<Node>(it); |
| 640 | } |
| 641 | bool operator<(const ActiveIt& it) const { |
| 642 | return static_cast<Node>(*this) < static_cast<Node>(it); |
| 643 | } |
| 644 | |
| 645 | private: |
| 646 | const BellmanFord* _algorithm; |
| 647 | int _index; |
| 648 | }; |
| 649 | |
| 650 | typedef PredMapPath<Digraph, PredMap> Path; |
| 651 | |
| 652 | /// \brief Gives back the shortest path. |
| 653 | /// |
| 654 | /// Gives back the shortest path. |
| 655 | /// \pre The \c t should be reachable from the source. |
| 656 | Path path(Node t) |
| 657 | { |
| 658 | return Path(*digraph, *_pred, t); |
| 659 | } |
| 660 | |
| 661 | |
| 662 | // TODO : implement negative cycle |
| 663 | // /// \brief Gives back a negative cycle. |
| 664 | // /// |
| 665 | // /// This function gives back a negative cycle. |
| 666 | // /// If the algorithm have not found yet negative cycle it will give back |
| 667 | // /// an empty path. |
| 668 | // Path negativeCycle() { |
| 669 | // typename Digraph::template NodeMap<int> state(*digraph, 0); |
| 670 | // for (ActiveIt it(*this); it != INVALID; ++it) { |
| 671 | // if (state[it] == 0) { |
| 672 | // for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
| 673 | // if (state[t] == 0) { |
| 674 | // state[t] = 1; |
| 675 | // } else if (state[t] == 2) { |
| 676 | // break; |
| 677 | // } else { |
| 678 | // p.clear(); |
| 679 | // typename Path::Builder b(p); |
| 680 | // b.setStartNode(t); |
| 681 | // b.pushFront(predArc(t)); |
| 682 | // for(Node s = predNode(t); s != t; s = predNode(s)) { |
| 683 | // b.pushFront(predArc(s)); |
| 684 | // } |
| 685 | // b.commit(); |
| 686 | // return true; |
| 687 | // } |
| 688 | // } |
| 689 | // for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
| 690 | // if (state[t] == 1) { |
| 691 | // state[t] = 2; |
| 692 | // } else { |
| 693 | // break; |
| 694 | // } |
| 695 | // } |
| 696 | // } |
| 697 | // } |
| 698 | // return false; |
| 699 | // } |
| 700 | |
| 701 | /// \brief The distance of a node from the root. |
| 702 | /// |
| 703 | /// Returns the distance of a node from the root. |
| 704 | /// \pre \ref run() must be called before using this function. |
| 705 | /// \warning If node \c v in unreachable from the root the return value |
| 706 | /// of this funcion is undefined. |
| 707 | Value dist(Node v) const { return (*_dist)[v]; } |
| 708 | |
| 709 | /// \brief Returns the 'previous arc' of the shortest path tree. |
| 710 | /// |
| 711 | /// For a node \c v it returns the 'previous arc' of the shortest path |
| 712 | /// tree, i.e. it returns the last arc of a shortest path from the root |
| 713 | /// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
| 714 | /// if \c v=s. The shortest path tree used here is equal to the shortest |
| 715 | /// path tree used in \ref predNode(). |
| 716 | /// \pre \ref run() must be called before using |
| 717 | /// this function. |
| 718 | Arc predArc(Node v) const { return (*_pred)[v]; } |
| 719 | |
| 720 | /// \brief Returns the 'previous node' of the shortest path tree. |
| 721 | /// |
| 722 | /// For a node \c v it returns the 'previous node' of the shortest path |
| 723 | /// tree, i.e. it returns the last but one node from a shortest path from |
| 724 | /// the root to \c /v. It is INVALID if \c v is unreachable from the root |
| 725 | /// or if \c v=s. The shortest path tree used here is equal to the |
| 726 | /// shortest path tree used in \ref predArc(). \pre \ref run() must be |
| 727 | /// called before using this function. |
| 728 | Node predNode(Node v) const { |
| 729 | return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); |
| 730 | } |
| 731 | |
| 732 | /// \brief Returns a reference to the NodeMap of distances. |
| 733 | /// |
| 734 | /// Returns a reference to the NodeMap of distances. \pre \ref run() must |
| 735 | /// be called before using this function. |
| 736 | const DistMap &distMap() const { return *_dist;} |
| 737 | |
| 738 | /// \brief Returns a reference to the shortest path tree map. |
| 739 | /// |
| 740 | /// Returns a reference to the NodeMap of the arcs of the |
| 741 | /// shortest path tree. |
| 742 | /// \pre \ref run() must be called before using this function. |
| 743 | const PredMap &predMap() const { return *_pred; } |
| 744 | |
| 745 | /// \brief Checks if a node is reachable from the root. |
| 746 | /// |
| 747 | /// Returns \c true if \c v is reachable from the root. |
| 748 | /// \pre \ref run() must be called before using this function. |
| 749 | /// |
| 750 | bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); } |
| 751 | |
| 752 | ///@} |
| 753 | }; |
| 754 | |
| 755 | /// \brief Default traits class of BellmanFord function. |
| 756 | /// |
| 757 | /// Default traits class of BellmanFord function. |
| 758 | /// \param _Digraph Digraph type. |
| 759 | /// \param _LengthMap Type of length map. |
| 760 | template <typename _Digraph, typename _LengthMap> |
| 761 | struct BellmanFordWizardDefaultTraits { |
| 762 | /// \brief The digraph type the algorithm runs on. |
| 763 | typedef _Digraph Digraph; |
| 764 | |
| 765 | /// \brief The type of the map that stores the arc lengths. |
| 766 | /// |
| 767 | /// The type of the map that stores the arc lengths. |
| 768 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 769 | typedef _LengthMap LengthMap; |
| 770 | |
| 771 | /// \brief The value type of the length map. |
| 772 | typedef typename _LengthMap::Value Value; |
| 773 | |
| 774 | /// \brief Operation traits for Bellman-Ford algorithm. |
| 775 | /// |
| 776 | /// It defines the infinity type on the given Value type |
| 777 | /// and the used operation. |
| 778 | /// \see BellmanFordDefaultOperationTraits |
| 779 | typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 780 | |
| 781 | /// \brief The type of the map that stores the last |
| 782 | /// arcs of the shortest paths. |
| 783 | /// |
| 784 | /// The type of the map that stores the last |
| 785 | /// arcs of the shortest paths. |
| 786 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 787 | typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap; |
| 788 | |
| 789 | /// \brief Instantiates a PredMap. |
| 790 | /// |
| 791 | /// This function instantiates a \ref PredMap. |
| 792 | static PredMap *createPredMap(const _Digraph &) { |
| 793 | return new PredMap(); |
| 794 | } |
| 795 | /// \brief The type of the map that stores the dists of the nodes. |
| 796 | /// |
| 797 | /// The type of the map that stores the dists of the nodes. |
| 798 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 799 | typedef NullMap<typename Digraph::Node, Value> DistMap; |
| 800 | /// \brief Instantiates a DistMap. |
| 801 | /// |
| 802 | /// This function instantiates a \ref DistMap. |
| 803 | static DistMap *createDistMap(const _Digraph &) { |
| 804 | return new DistMap(); |
| 805 | } |
| 806 | }; |
| 807 | |
| 808 | /// \brief Default traits used by \ref BellmanFordWizard |
| 809 | /// |
| 810 | /// To make it easier to use BellmanFord algorithm |
| 811 | /// we have created a wizard class. |
| 812 | /// This \ref BellmanFordWizard class needs default traits, |
| 813 | /// as well as the \ref BellmanFord class. |
| 814 | /// The \ref BellmanFordWizardBase is a class to be the default traits of the |
| 815 | /// \ref BellmanFordWizard class. |
| 816 | /// \todo More named parameters are required... |
| 817 | template<class _Digraph,class _LengthMap> |
| 818 | class BellmanFordWizardBase |
| 819 | : public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> { |
| 820 | |
| 821 | typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base; |
| 822 | protected: |
| 823 | /// Type of the nodes in the digraph. |
| 824 | typedef typename Base::Digraph::Node Node; |
| 825 | |
| 826 | /// Pointer to the underlying digraph. |
| 827 | void *_graph; |
| 828 | /// Pointer to the length map |
| 829 | void *_length; |
| 830 | ///Pointer to the map of predecessors arcs. |
| 831 | void *_pred; |
| 832 | ///Pointer to the map of distances. |
| 833 | void *_dist; |
| 834 | ///Pointer to the source node. |
| 835 | Node _source; |
| 836 | |
| 837 | public: |
| 838 | /// Constructor. |
| 839 | |
| 840 | /// This constructor does not require parameters, therefore it initiates |
| 841 | /// all of the attributes to default values (0, INVALID). |
| 842 | BellmanFordWizardBase() : _graph(0), _length(0), _pred(0), |
| 843 | _dist(0), _source(INVALID) {} |
| 844 | |
| 845 | /// Constructor. |
| 846 | |
| 847 | /// This constructor requires some parameters, |
| 848 | /// listed in the parameters list. |
| 849 | /// Others are initiated to 0. |
| 850 | /// \param digraph is the initial value of \ref _graph |
| 851 | /// \param length is the initial value of \ref _length |
| 852 | /// \param source is the initial value of \ref _source |
| 853 | BellmanFordWizardBase(const _Digraph& digraph, |
| 854 | const _LengthMap& length, |
| 855 | Node source = INVALID) : |
| 856 | _graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), |
| 857 | _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), |
| 858 | _pred(0), _dist(0), _source(source) {} |
| 859 | |
| 860 | }; |
| 861 | |
| 862 | /// A class to make the usage of BellmanFord algorithm easier |
| 863 | |
| 864 | /// This class is created to make it easier to use BellmanFord algorithm. |
| 865 | /// It uses the functions and features of the plain \ref BellmanFord, |
| 866 | /// but it is much simpler to use it. |
| 867 | /// |
| 868 | /// Simplicity means that the way to change the types defined |
| 869 | /// in the traits class is based on functions that returns the new class |
| 870 | /// and not on templatable built-in classes. |
| 871 | /// When using the plain \ref BellmanFord |
| 872 | /// the new class with the modified type comes from |
| 873 | /// the original class by using the :: |
| 874 | /// operator. In the case of \ref BellmanFordWizard only |
| 875 | /// a function have to be called and it will |
| 876 | /// return the needed class. |
| 877 | /// |
| 878 | /// It does not have own \ref run method. When its \ref run method is called |
| 879 | /// it initiates a plain \ref BellmanFord class, and calls the \ref |
| 880 | /// BellmanFord::run method of it. |
| 881 | template<class _Traits> |
| 882 | class BellmanFordWizard : public _Traits { |
| 883 | typedef _Traits Base; |
| 884 | |
| 885 | ///The type of the underlying digraph. |
| 886 | typedef typename _Traits::Digraph Digraph; |
| 887 | |
| 888 | typedef typename Digraph::Node Node; |
| 889 | typedef typename Digraph::NodeIt NodeIt; |
| 890 | typedef typename Digraph::Arc Arc; |
| 891 | typedef typename Digraph::OutArcIt ArcIt; |
| 892 | |
| 893 | ///The type of the map that stores the arc lengths. |
| 894 | typedef typename _Traits::LengthMap LengthMap; |
| 895 | |
| 896 | ///The type of the length of the arcs. |
| 897 | typedef typename LengthMap::Value Value; |
| 898 | |
| 899 | ///\brief The type of the map that stores the last |
| 900 | ///arcs of the shortest paths. |
| 901 | typedef typename _Traits::PredMap PredMap; |
| 902 | |
| 903 | ///The type of the map that stores the dists of the nodes. |
| 904 | typedef typename _Traits::DistMap DistMap; |
| 905 | |
| 906 | public: |
| 907 | /// Constructor. |
| 908 | BellmanFordWizard() : _Traits() {} |
| 909 | |
| 910 | /// \brief Constructor that requires parameters. |
| 911 | /// |
| 912 | /// Constructor that requires parameters. |
| 913 | /// These parameters will be the default values for the traits class. |
| 914 | BellmanFordWizard(const Digraph& digraph, const LengthMap& length, |
| 915 | Node src = INVALID) |
| 916 | : _Traits(digraph, length, src) {} |
| 917 | |
| 918 | /// \brief Copy constructor |
| 919 | BellmanFordWizard(const _Traits &b) : _Traits(b) {} |
| 920 | |
| 921 | ~BellmanFordWizard() {} |
| 922 | |
| 923 | /// \brief Runs BellmanFord algorithm from a given node. |
| 924 | /// |
| 925 | /// Runs BellmanFord algorithm from a given node. |
| 926 | /// The node can be given by the \ref source function. |
| 927 | void run() { |
| 928 | LEMON_ASSERT(Base::_source != INVALID, "Source node is not given"); |
| 929 | BellmanFord<Digraph,LengthMap,_Traits> |
| 930 | bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 931 | *reinterpret_cast<const LengthMap*>(Base::_length)); |
| 932 | if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 933 | if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 934 | bf.run(Base::_source); |
| 935 | } |
| 936 | |
| 937 | /// \brief Runs BellmanFord algorithm from the given node. |
| 938 | /// |
| 939 | /// Runs BellmanFord algorithm from the given node. |
| 940 | /// \param src is the given source. |
| 941 | void run(Node src) { |
| 942 | Base::_source = src; |
| 943 | run(); |
| 944 | } |
| 945 | |
| 946 | template<class T> |
| 947 | struct DefPredMapBase : public Base { |
| 948 | typedef T PredMap; |
| 949 | static PredMap *createPredMap(const Digraph &) { return 0; }; |
| 950 | DefPredMapBase(const _Traits &b) : _Traits(b) {} |
| 951 | }; |
| 952 | |
| 953 | ///\brief \ref named-templ-param "Named parameter" |
| 954 | ///function for setting PredMap type |
| 955 | /// |
| 956 | /// \ref named-templ-param "Named parameter" |
| 957 | ///function for setting PredMap type |
| 958 | /// |
| 959 | template<class T> |
| 960 | BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) |
| 961 | { |
| 962 | Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 963 | return BellmanFordWizard<DefPredMapBase<T> >(*this); |
| 964 | } |
| 965 | |
| 966 | template<class T> |
| 967 | struct DefDistMapBase : public Base { |
| 968 | typedef T DistMap; |
| 969 | static DistMap *createDistMap(const Digraph &) { return 0; }; |
| 970 | DefDistMapBase(const _Traits &b) : _Traits(b) {} |
| 971 | }; |
| 972 | |
| 973 | ///\brief \ref named-templ-param "Named parameter" |
| 974 | ///function for setting DistMap type |
| 975 | /// |
| 976 | /// \ref named-templ-param "Named parameter" |
| 977 | ///function for setting DistMap type |
| 978 | /// |
| 979 | template<class T> |
| 980 | BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) { |
| 981 | Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 982 | return BellmanFordWizard<DefDistMapBase<T> >(*this); |
| 983 | } |
| 984 | |
| 985 | template<class T> |
| 986 | struct DefOperationTraitsBase : public Base { |
| 987 | typedef T OperationTraits; |
| 988 | DefOperationTraitsBase(const _Traits &b) : _Traits(b) {} |
| 989 | }; |
| 990 | |
| 991 | ///\brief \ref named-templ-param "Named parameter" |
| 992 | ///function for setting OperationTraits type |
| 993 | /// |
| 994 | /// \ref named-templ-param "Named parameter" |
| 995 | ///function for setting OperationTraits type |
| 996 | /// |
| 997 | template<class T> |
| 998 | BellmanFordWizard<DefOperationTraitsBase<T> > distMap() { |
| 999 | return BellmanFordWizard<DefDistMapBase<T> >(*this); |
| 1000 | } |
| 1001 | |
| 1002 | /// \brief Sets the source node, from which the BellmanFord algorithm runs. |
| 1003 | /// |
| 1004 | /// Sets the source node, from which the BellmanFord algorithm runs. |
| 1005 | /// \param src is the source node. |
| 1006 | BellmanFordWizard<_Traits>& source(Node src) { |
| 1007 | Base::_source = src; |
| 1008 | return *this; |
| 1009 | } |
| 1010 | |
| 1011 | }; |
| 1012 | |
| 1013 | /// \brief Function type interface for BellmanFord algorithm. |
| 1014 | /// |
| 1015 | /// \ingroup shortest_path |
| 1016 | /// Function type interface for BellmanFord algorithm. |
| 1017 | /// |
| 1018 | /// This function also has several \ref named-templ-func-param |
| 1019 | /// "named parameters", they are declared as the members of class |
| 1020 | /// \ref BellmanFordWizard. |
| 1021 | /// The following |
| 1022 | /// example shows how to use these parameters. |
| 1023 | ///\code |
| 1024 | /// bellmanford(g,length,source).predMap(preds).run(); |
| 1025 | ///\endcode |
| 1026 | /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
| 1027 | /// to the end of the parameter list. |
| 1028 | /// \sa BellmanFordWizard |
| 1029 | /// \sa BellmanFord |
| 1030 | template<class _Digraph, class _LengthMap> |
| 1031 | BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
| 1032 | bellmanFord(const _Digraph& digraph, |
| 1033 | const _LengthMap& length, |
| 1034 | typename _Digraph::Node source = INVALID) { |
| 1035 | return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
| 1036 | (digraph, length, source); |
| 1037 | } |
| 1038 | |
| 1039 | } //END OF NAMESPACE LEMON |
| 1040 | |
| 1041 | #endif |
| 1042 | |