| | 1 | /* -*- C++ -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2008 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_BELMANN_FORD_H |
| | 20 | #define LEMON_BELMANN_FORD_H |
| | 21 | |
| | 22 | /// \ingroup shortest_path |
| | 23 | /// \file |
| | 24 | /// \brief Bellman-Ford algorithm. |
| | 25 | /// |
| | 26 | |
| | 27 | #include <lemon/bits/path_dump.h> |
| | 28 | #include <lemon/core.h> |
| | 29 | #include <lemon/error.h> |
| | 30 | #include <lemon/maps.h> |
| | 31 | |
| | 32 | #include <limits> |
| | 33 | |
| | 34 | namespace lemon { |
| | 35 | |
| | 36 | /// \brief Default OperationTraits for the BellmanFord algorithm class. |
| | 37 | /// |
| | 38 | /// It defines all computational operations and constants which are |
| | 39 | /// used in the Bellman-Ford algorithm. The default implementation |
| | 40 | /// is based on the numeric_limits class. If the numeric type does not |
| | 41 | /// have infinity value then the maximum value is used as extremal |
| | 42 | /// infinity value. |
| | 43 | template < |
| | 44 | typename Value, |
| | 45 | bool has_infinity = std::numeric_limits<Value>::has_infinity> |
| | 46 | struct BellmanFordDefaultOperationTraits { |
| | 47 | /// \brief Gives back the zero value of the type. |
| | 48 | static Value zero() { |
| | 49 | return static_cast<Value>(0); |
| | 50 | } |
| | 51 | /// \brief Gives back the positive infinity value of the type. |
| | 52 | static Value infinity() { |
| | 53 | return std::numeric_limits<Value>::infinity(); |
| | 54 | } |
| | 55 | /// \brief Gives back the sum of the given two elements. |
| | 56 | static Value plus(const Value& left, const Value& right) { |
| | 57 | return left + right; |
| | 58 | } |
| | 59 | /// \brief Gives back true only if the first value less than the second. |
| | 60 | static bool less(const Value& left, const Value& right) { |
| | 61 | return left < right; |
| | 62 | } |
| | 63 | }; |
| | 64 | |
| | 65 | template <typename Value> |
| | 66 | struct BellmanFordDefaultOperationTraits<Value, false> { |
| | 67 | static Value zero() { |
| | 68 | return static_cast<Value>(0); |
| | 69 | } |
| | 70 | static Value infinity() { |
| | 71 | return std::numeric_limits<Value>::max(); |
| | 72 | } |
| | 73 | static Value plus(const Value& left, const Value& right) { |
| | 74 | if (left == infinity() || right == infinity()) return infinity(); |
| | 75 | return left + right; |
| | 76 | } |
| | 77 | static bool less(const Value& left, const Value& right) { |
| | 78 | return left < right; |
| | 79 | } |
| | 80 | }; |
| | 81 | |
| | 82 | /// \brief Default traits class of BellmanFord class. |
| | 83 | /// |
| | 84 | /// Default traits class of BellmanFord class. |
| | 85 | /// \param _Digraph Digraph type. |
| | 86 | /// \param _LegthMap Type of length map. |
| | 87 | template<class _Digraph, class _LengthMap> |
| | 88 | struct BellmanFordDefaultTraits { |
| | 89 | /// The digraph type the algorithm runs on. |
| | 90 | typedef _Digraph Digraph; |
| | 91 | |
| | 92 | /// \brief The type of the map that stores the arc lengths. |
| | 93 | /// |
| | 94 | /// The type of the map that stores the arc lengths. |
| | 95 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| | 96 | typedef _LengthMap LengthMap; |
| | 97 | |
| | 98 | // The type of the length of the arcs. |
| | 99 | typedef typename _LengthMap::Value Value; |
| | 100 | |
| | 101 | /// \brief Operation traits for Bellman-Ford algorithm. |
| | 102 | /// |
| | 103 | /// It defines the infinity type on the given Value type |
| | 104 | /// and the used operation. |
| | 105 | /// \see BellmanFordDefaultOperationTraits |
| | 106 | typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| | 107 | |
| | 108 | /// \brief The type of the map that stores the last arcs of the |
| | 109 | /// shortest paths. |
| | 110 | /// |
| | 111 | /// The type of the map that stores the last |
| | 112 | /// arcs of the shortest paths. |
| | 113 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| | 114 | /// |
| | 115 | typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap; |
| | 116 | |
| | 117 | /// \brief Instantiates a PredMap. |
| | 118 | /// |
| | 119 | /// This function instantiates a \ref PredMap. |
| | 120 | /// \param digraph is the digraph, to which we would like to define the PredMap. |
| | 121 | static PredMap *createPredMap(const _Digraph& digraph) { |
| | 122 | return new PredMap(digraph); |
| | 123 | } |
| | 124 | |
| | 125 | /// \brief The type of the map that stores the dists of the nodes. |
| | 126 | /// |
| | 127 | /// The type of the map that stores the dists of the nodes. |
| | 128 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| | 129 | /// |
| | 130 | typedef typename Digraph::template NodeMap<typename _LengthMap::Value> |
| | 131 | DistMap; |
| | 132 | |
| | 133 | /// \brief Instantiates a DistMap. |
| | 134 | /// |
| | 135 | /// This function instantiates a \ref DistMap. |
| | 136 | /// \param digraph is the digraph, to which we would like to define the |
| | 137 | /// \ref DistMap |
| | 138 | static DistMap *createDistMap(const _Digraph& digraph) { |
| | 139 | return new DistMap(digraph); |
| | 140 | } |
| | 141 | |
| | 142 | }; |
| | 143 | |
| | 144 | /// \brief %BellmanFord algorithm class. |
| | 145 | /// |
| | 146 | /// \ingroup shortest_path |
| | 147 | /// This class provides an efficient implementation of \c Bellman-Ford |
| | 148 | /// algorithm. The arc lengths are passed to the algorithm using a |
| | 149 | /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| | 150 | /// kind of length. |
| | 151 | /// |
| | 152 | /// The Bellman-Ford algorithm solves the shortest path from one node |
| | 153 | /// problem when the arcs can have negative length but the digraph should |
| | 154 | /// not contain cycles with negative sum of length. If we can assume |
| | 155 | /// that all arc is non-negative in the digraph then the dijkstra algorithm |
| | 156 | /// should be used rather. |
| | 157 | /// |
| | 158 | /// The maximal time complexity of the algorithm is \f$ O(ne) \f$. |
| | 159 | /// |
| | 160 | /// The type of the length is determined by the |
| | 161 | /// \ref concepts::ReadMap::Value "Value" of the length map. |
| | 162 | /// |
| | 163 | /// \param _Digraph The digraph type the algorithm runs on. The default value |
| | 164 | /// is \ref ListDigraph. The value of _Digraph is not used directly by |
| | 165 | /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
| | 166 | /// \param _LengthMap This read-only ArcMap determines the lengths of the |
| | 167 | /// arcs. The default map type is \ref concepts::Digraph::ArcMap |
| | 168 | /// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly |
| | 169 | /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
| | 170 | /// \param _Traits Traits class to set various data types used by the |
| | 171 | /// algorithm. The default traits class is \ref BellmanFordDefaultTraits |
| | 172 | /// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref |
| | 173 | /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits |
| | 174 | /// class. |
| | 175 | #ifdef DOXYGEN |
| | 176 | template <typename _Digraph, typename _LengthMap, typename _Traits> |
| | 177 | #else |
| | 178 | template <typename _Digraph, |
| | 179 | typename _LengthMap=typename _Digraph::template ArcMap<int>, |
| | 180 | typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> > |
| | 181 | #endif |
| | 182 | class BellmanFord { |
| | 183 | public: |
| | 184 | |
| | 185 | typedef _Traits Traits; |
| | 186 | ///The type of the underlying digraph. |
| | 187 | typedef typename _Traits::Digraph Digraph; |
| | 188 | |
| | 189 | typedef typename Digraph::Node Node; |
| | 190 | typedef typename Digraph::NodeIt NodeIt; |
| | 191 | typedef typename Digraph::Arc Arc; |
| | 192 | typedef typename Digraph::OutArcIt OutArcIt; |
| | 193 | |
| | 194 | /// \brief The type of the length of the arcs. |
| | 195 | typedef typename _Traits::LengthMap::Value Value; |
| | 196 | /// \brief The type of the map that stores the arc lengths. |
| | 197 | typedef typename _Traits::LengthMap LengthMap; |
| | 198 | /// \brief The type of the map that stores the last |
| | 199 | /// arcs of the shortest paths. |
| | 200 | typedef typename _Traits::PredMap PredMap; |
| | 201 | /// \brief The type of the map that stores the dists of the nodes. |
| | 202 | typedef typename _Traits::DistMap DistMap; |
| | 203 | /// \brief The operation traits. |
| | 204 | typedef typename _Traits::OperationTraits OperationTraits; |
| | 205 | private: |
| | 206 | /// Pointer to the underlying digraph. |
| | 207 | const Digraph *digraph; |
| | 208 | /// Pointer to the length map |
| | 209 | const LengthMap *length; |
| | 210 | ///Pointer to the map of predecessors arcs. |
| | 211 | PredMap *_pred; |
| | 212 | ///Indicates if \ref _pred is locally allocated (\c true) or not. |
| | 213 | bool local_pred; |
| | 214 | ///Pointer to the map of distances. |
| | 215 | DistMap *_dist; |
| | 216 | ///Indicates if \ref _dist is locally allocated (\c true) or not. |
| | 217 | bool local_dist; |
| | 218 | |
| | 219 | typedef typename Digraph::template NodeMap<bool> MaskMap; |
| | 220 | MaskMap *_mask; |
| | 221 | |
| | 222 | std::vector<Node> _process; |
| | 223 | |
| | 224 | /// Creates the maps if necessary. |
| | 225 | void create_maps() { |
| | 226 | if(!_pred) { |
| | 227 | local_pred = true; |
| | 228 | _pred = Traits::createPredMap(*digraph); |
| | 229 | } |
| | 230 | if(!_dist) { |
| | 231 | local_dist = true; |
| | 232 | _dist = Traits::createDistMap(*digraph); |
| | 233 | } |
| | 234 | _mask = new MaskMap(*digraph, false); |
| | 235 | } |
| | 236 | |
| | 237 | public : |
| | 238 | |
| | 239 | typedef BellmanFord Create; |
| | 240 | |
| | 241 | /// \name Named template parameters |
| | 242 | |
| | 243 | ///@{ |
| | 244 | |
| | 245 | template <class T> |
| | 246 | struct DefPredMapTraits : public Traits { |
| | 247 | typedef T PredMap; |
| | 248 | static PredMap *createPredMap(const Digraph&) { |
| | 249 | LEMON_ASSERT(false, "PredMap is not initialized"); |
| | 250 | return 0; // ignore warnings |
| | 251 | } |
| | 252 | }; |
| | 253 | |
| | 254 | /// \brief \ref named-templ-param "Named parameter" for setting PredMap |
| | 255 | /// type |
| | 256 | /// \ref named-templ-param "Named parameter" for setting PredMap type |
| | 257 | /// |
| | 258 | template <class T> |
| | 259 | struct SetPredMap |
| | 260 | : public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > { |
| | 261 | typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
| | 262 | }; |
| | 263 | |
| | 264 | template <class T> |
| | 265 | struct DefDistMapTraits : public Traits { |
| | 266 | typedef T DistMap; |
| | 267 | static DistMap *createDistMap(const Digraph&) { |
| | 268 | LEMON_ASSERT(false, "DistMap is not initialized"); |
| | 269 | return 0; // ignore warnings |
| | 270 | } |
| | 271 | }; |
| | 272 | |
| | 273 | /// \brief \ref named-templ-param "Named parameter" for setting DistMap |
| | 274 | /// type |
| | 275 | /// |
| | 276 | /// \ref named-templ-param "Named parameter" for setting DistMap type |
| | 277 | /// |
| | 278 | template <class T> |
| | 279 | struct SetDistMap |
| | 280 | : public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > { |
| | 281 | typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
| | 282 | }; |
| | 283 | |
| | 284 | template <class T> |
| | 285 | struct DefOperationTraitsTraits : public Traits { |
| | 286 | typedef T OperationTraits; |
| | 287 | }; |
| | 288 | |
| | 289 | /// \brief \ref named-templ-param "Named parameter" for setting |
| | 290 | /// OperationTraits type |
| | 291 | /// |
| | 292 | /// \ref named-templ-param "Named parameter" for setting OperationTraits |
| | 293 | /// type |
| | 294 | template <class T> |
| | 295 | struct SetOperationTraits |
| | 296 | : public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
| | 297 | typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > |
| | 298 | Create; |
| | 299 | }; |
| | 300 | |
| | 301 | ///@} |
| | 302 | |
| | 303 | protected: |
| | 304 | |
| | 305 | BellmanFord() {} |
| | 306 | |
| | 307 | public: |
| | 308 | |
| | 309 | /// \brief Constructor. |
| | 310 | /// |
| | 311 | /// \param _graph the digraph the algorithm will run on. |
| | 312 | /// \param _length the length map used by the algorithm. |
| | 313 | BellmanFord(const Digraph& _graph, const LengthMap& _length) : |
| | 314 | digraph(&_graph), length(&_length), |
| | 315 | _pred(0), local_pred(false), |
| | 316 | _dist(0), local_dist(false), _mask(0) {} |
| | 317 | |
| | 318 | ///Destructor. |
| | 319 | ~BellmanFord() { |
| | 320 | if(local_pred) delete _pred; |
| | 321 | if(local_dist) delete _dist; |
| | 322 | if(_mask) delete _mask; |
| | 323 | } |
| | 324 | |
| | 325 | /// \brief Sets the length map. |
| | 326 | /// |
| | 327 | /// Sets the length map. |
| | 328 | /// \return \c (*this) |
| | 329 | BellmanFord &lengthMap(const LengthMap &m) { |
| | 330 | length = &m; |
| | 331 | return *this; |
| | 332 | } |
| | 333 | |
| | 334 | /// \brief Sets the map storing the predecessor arcs. |
| | 335 | /// |
| | 336 | /// Sets the map storing the predecessor arcs. |
| | 337 | /// If you don't use this function before calling \ref run(), |
| | 338 | /// it will allocate one. The destuctor deallocates this |
| | 339 | /// automatically allocated map, of course. |
| | 340 | /// \return \c (*this) |
| | 341 | BellmanFord &predMap(PredMap &m) { |
| | 342 | if(local_pred) { |
| | 343 | delete _pred; |
| | 344 | local_pred=false; |
| | 345 | } |
| | 346 | _pred = &m; |
| | 347 | return *this; |
| | 348 | } |
| | 349 | |
| | 350 | /// \brief Sets the map storing the distances calculated by the algorithm. |
| | 351 | /// |
| | 352 | /// Sets the map storing the distances calculated by the algorithm. |
| | 353 | /// If you don't use this function before calling \ref run(), |
| | 354 | /// it will allocate one. The destuctor deallocates this |
| | 355 | /// automatically allocated map, of course. |
| | 356 | /// \return \c (*this) |
| | 357 | BellmanFord &distMap(DistMap &m) { |
| | 358 | if(local_dist) { |
| | 359 | delete _dist; |
| | 360 | local_dist=false; |
| | 361 | } |
| | 362 | _dist = &m; |
| | 363 | return *this; |
| | 364 | } |
| | 365 | |
| | 366 | /// \name Execution control |
| | 367 | /// The simplest way to execute the algorithm is to use |
| | 368 | /// one of the member functions called \c run(...). |
| | 369 | /// \n |
| | 370 | /// If you need more control on the execution, |
| | 371 | /// first you must call \ref init(), then you can add several source nodes |
| | 372 | /// with \ref addSource(). |
| | 373 | /// Finally \ref start() will perform the actual path |
| | 374 | /// computation. |
| | 375 | |
| | 376 | ///@{ |
| | 377 | |
| | 378 | /// \brief Initializes the internal data structures. |
| | 379 | /// |
| | 380 | /// Initializes the internal data structures. |
| | 381 | void init(const Value value = OperationTraits::infinity()) { |
| | 382 | create_maps(); |
| | 383 | for (NodeIt it(*digraph); it != INVALID; ++it) { |
| | 384 | _pred->set(it, INVALID); |
| | 385 | _dist->set(it, value); |
| | 386 | } |
| | 387 | _process.clear(); |
| | 388 | if (OperationTraits::less(value, OperationTraits::infinity())) { |
| | 389 | for (NodeIt it(*digraph); it != INVALID; ++it) { |
| | 390 | _process.push_back(it); |
| | 391 | _mask->set(it, true); |
| | 392 | } |
| | 393 | } |
| | 394 | } |
| | 395 | |
| | 396 | /// \brief Adds a new source node. |
| | 397 | /// |
| | 398 | /// Adds a new source node. The optional second parameter is the |
| | 399 | /// initial distance of the node. It just sets the distance of the |
| | 400 | /// node to the given value. |
| | 401 | void addSource(Node source, Value dst = OperationTraits::zero()) { |
| | 402 | _dist->set(source, dst); |
| | 403 | if (!(*_mask)[source]) { |
| | 404 | _process.push_back(source); |
| | 405 | _mask->set(source, true); |
| | 406 | } |
| | 407 | } |
| | 408 | |
| | 409 | /// \brief Executes one round from the Bellman-Ford algorithm. |
| | 410 | /// |
| | 411 | /// If the algoritm calculated the distances in the previous round |
| | 412 | /// exactly for all at most \f$ k \f$ length path lengths then it will |
| | 413 | /// calculate the distances exactly for all at most \f$ k + 1 \f$ |
| | 414 | /// length path lengths. With \f$ k \f$ iteration this function |
| | 415 | /// calculates the at most \f$ k \f$ length path lengths. |
| | 416 | /// |
| | 417 | /// \warning The paths with limited arc number cannot be retrieved |
| | 418 | /// easily with \ref path() or \ref predArc() functions. If you |
| | 419 | /// need the shortest path and not just the distance you should store |
| | 420 | /// after each iteration the \ref predMap() map and manually build |
| | 421 | /// the path. |
| | 422 | /// |
| | 423 | /// \return \c true when the algorithm have not found more shorter |
| | 424 | /// paths. |
| | 425 | bool processNextRound() { |
| | 426 | for (int i = 0; i < int(_process.size()); ++i) { |
| | 427 | _mask->set(_process[i], false); |
| | 428 | } |
| | 429 | std::vector<Node> nextProcess; |
| | 430 | std::vector<Value> values(_process.size()); |
| | 431 | for (int i = 0; i < int(_process.size()); ++i) { |
| | 432 | values[i] = (*_dist)[_process[i]]; |
| | 433 | } |
| | 434 | for (int i = 0; i < int(_process.size()); ++i) { |
| | 435 | for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
| | 436 | Node target = digraph->target(it); |
| | 437 | Value relaxed = OperationTraits::plus(values[i], (*length)[it]); |
| | 438 | if (OperationTraits::less(relaxed, (*_dist)[target])) { |
| | 439 | _pred->set(target, it); |
| | 440 | _dist->set(target, relaxed); |
| | 441 | if (!(*_mask)[target]) { |
| | 442 | _mask->set(target, true); |
| | 443 | nextProcess.push_back(target); |
| | 444 | } |
| | 445 | } |
| | 446 | } |
| | 447 | } |
| | 448 | _process.swap(nextProcess); |
| | 449 | return _process.empty(); |
| | 450 | } |
| | 451 | |
| | 452 | /// \brief Executes one weak round from the Bellman-Ford algorithm. |
| | 453 | /// |
| | 454 | /// If the algorithm calculated the distances in the |
| | 455 | /// previous round at least for all at most k length paths then it will |
| | 456 | /// calculate the distances at least for all at most k + 1 length paths. |
| | 457 | /// This function does not make it possible to calculate strictly the |
| | 458 | /// at most k length minimal paths, this is why it is |
| | 459 | /// called just weak round. |
| | 460 | /// \return \c true when the algorithm have not found more shorter paths. |
| | 461 | bool processNextWeakRound() { |
| | 462 | for (int i = 0; i < int(_process.size()); ++i) { |
| | 463 | _mask->set(_process[i], false); |
| | 464 | } |
| | 465 | std::vector<Node> nextProcess; |
| | 466 | for (int i = 0; i < int(_process.size()); ++i) { |
| | 467 | for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
| | 468 | Node target = digraph->target(it); |
| | 469 | Value relaxed = |
| | 470 | OperationTraits::plus((*_dist)[_process[i]], (*length)[it]); |
| | 471 | if (OperationTraits::less(relaxed, (*_dist)[target])) { |
| | 472 | _pred->set(target, it); |
| | 473 | _dist->set(target, relaxed); |
| | 474 | if (!(*_mask)[target]) { |
| | 475 | _mask->set(target, true); |
| | 476 | nextProcess.push_back(target); |
| | 477 | } |
| | 478 | } |
| | 479 | } |
| | 480 | } |
| | 481 | _process.swap(nextProcess); |
| | 482 | return _process.empty(); |
| | 483 | } |
| | 484 | |
| | 485 | /// \brief Executes the algorithm. |
| | 486 | /// |
| | 487 | /// \pre init() must be called and at least one node should be added |
| | 488 | /// with addSource() before using this function. |
| | 489 | /// |
| | 490 | /// This method runs the %BellmanFord algorithm from the root node(s) |
| | 491 | /// in order to compute the shortest path to each node. The algorithm |
| | 492 | /// computes |
| | 493 | /// - The shortest path tree. |
| | 494 | /// - The distance of each node from the root(s). |
| | 495 | void start() { |
| | 496 | int num = countNodes(*digraph) - 1; |
| | 497 | for (int i = 0; i < num; ++i) { |
| | 498 | if (processNextWeakRound()) break; |
| | 499 | } |
| | 500 | } |
| | 501 | |
| | 502 | /// \brief Executes the algorithm and checks the negative cycles. |
| | 503 | /// |
| | 504 | /// \pre init() must be called and at least one node should be added |
| | 505 | /// with addSource() before using this function. |
| | 506 | /// |
| | 507 | /// This method runs the %BellmanFord algorithm from the root node(s) |
| | 508 | /// in order to compute the shortest path to each node. The algorithm |
| | 509 | /// computes |
| | 510 | /// - The shortest path tree. |
| | 511 | /// - The distance of each node from the root(s). |
| | 512 | /// |
| | 513 | /// \return \c false if there is a negative cycle in the digraph. |
| | 514 | bool checkedStart() { |
| | 515 | int num = countNodes(*digraph); |
| | 516 | for (int i = 0; i < num; ++i) { |
| | 517 | if (processNextWeakRound()) return true; |
| | 518 | } |
| | 519 | return _process.empty(); |
| | 520 | } |
| | 521 | |
| | 522 | /// \brief Executes the algorithm with path length limit. |
| | 523 | /// |
| | 524 | /// \pre init() must be called and at least one node should be added |
| | 525 | /// with addSource() before using this function. |
| | 526 | /// |
| | 527 | /// This method runs the %BellmanFord algorithm from the root |
| | 528 | /// node(s) in order to compute the shortest path lengths with at |
| | 529 | /// most \c num arc. |
| | 530 | /// |
| | 531 | /// \warning The paths with limited arc number cannot be retrieved |
| | 532 | /// easily with \ref path() or \ref predArc() functions. If you |
| | 533 | /// need the shortest path and not just the distance you should store |
| | 534 | /// after each iteration the \ref predMap() map and manually build |
| | 535 | /// the path. |
| | 536 | /// |
| | 537 | /// The algorithm computes |
| | 538 | /// - The predecessor arc from each node. |
| | 539 | /// - The limited distance of each node from the root(s). |
| | 540 | void limitedStart(int num) { |
| | 541 | for (int i = 0; i < num; ++i) { |
| | 542 | if (processNextRound()) break; |
| | 543 | } |
| | 544 | } |
| | 545 | |
| | 546 | /// \brief Runs %BellmanFord algorithm from node \c s. |
| | 547 | /// |
| | 548 | /// This method runs the %BellmanFord algorithm from a root node \c s |
| | 549 | /// in order to compute the shortest path to each node. The algorithm |
| | 550 | /// computes |
| | 551 | /// - The shortest path tree. |
| | 552 | /// - The distance of each node from the root. |
| | 553 | /// |
| | 554 | /// \note d.run(s) is just a shortcut of the following code. |
| | 555 | ///\code |
| | 556 | /// d.init(); |
| | 557 | /// d.addSource(s); |
| | 558 | /// d.start(); |
| | 559 | ///\endcode |
| | 560 | void run(Node s) { |
| | 561 | init(); |
| | 562 | addSource(s); |
| | 563 | start(); |
| | 564 | } |
| | 565 | |
| | 566 | /// \brief Runs %BellmanFord algorithm with limited path length |
| | 567 | /// from node \c s. |
| | 568 | /// |
| | 569 | /// This method runs the %BellmanFord algorithm from a root node \c s |
| | 570 | /// in order to compute the shortest path with at most \c len arcs |
| | 571 | /// to each node. The algorithm computes |
| | 572 | /// - The shortest path tree. |
| | 573 | /// - The distance of each node from the root. |
| | 574 | /// |
| | 575 | /// \note d.run(s, num) is just a shortcut of the following code. |
| | 576 | ///\code |
| | 577 | /// d.init(); |
| | 578 | /// d.addSource(s); |
| | 579 | /// d.limitedStart(num); |
| | 580 | ///\endcode |
| | 581 | void run(Node s, int num) { |
| | 582 | init(); |
| | 583 | addSource(s); |
| | 584 | limitedStart(num); |
| | 585 | } |
| | 586 | |
| | 587 | ///@} |
| | 588 | |
| | 589 | /// \name Query Functions |
| | 590 | /// The result of the %BellmanFord algorithm can be obtained using these |
| | 591 | /// functions.\n |
| | 592 | /// Before the use of these functions, |
| | 593 | /// either run() or start() must be called. |
| | 594 | |
| | 595 | ///@{ |
| | 596 | |
| | 597 | /// \brief Lemon iterator for get the active nodes. |
| | 598 | /// |
| | 599 | /// Lemon iterator for get the active nodes. This class provides a |
| | 600 | /// common style lemon iterator which gives back a subset of the |
| | 601 | /// nodes. The iterated nodes are active in the algorithm after |
| | 602 | /// the last phase so these should be checked in the next phase to |
| | 603 | /// find augmenting arcs from these. |
| | 604 | class ActiveIt { |
| | 605 | public: |
| | 606 | |
| | 607 | /// \brief Constructor. |
| | 608 | /// |
| | 609 | /// Constructor for get the nodeset of the variable. |
| | 610 | ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| | 611 | { |
| | 612 | _index = _algorithm->_process.size() - 1; |
| | 613 | } |
| | 614 | |
| | 615 | /// \brief Invalid constructor. |
| | 616 | /// |
| | 617 | /// Invalid constructor. |
| | 618 | ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
| | 619 | |
| | 620 | /// \brief Conversion to node. |
| | 621 | /// |
| | 622 | /// Conversion to node. |
| | 623 | operator Node() const { |
| | 624 | return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| | 625 | } |
| | 626 | |
| | 627 | /// \brief Increment operator. |
| | 628 | /// |
| | 629 | /// Increment operator. |
| | 630 | ActiveIt& operator++() { |
| | 631 | --_index; |
| | 632 | return *this; |
| | 633 | } |
| | 634 | |
| | 635 | bool operator==(const ActiveIt& it) const { |
| | 636 | return static_cast<Node>(*this) == static_cast<Node>(it); |
| | 637 | } |
| | 638 | bool operator!=(const ActiveIt& it) const { |
| | 639 | return static_cast<Node>(*this) != static_cast<Node>(it); |
| | 640 | } |
| | 641 | bool operator<(const ActiveIt& it) const { |
| | 642 | return static_cast<Node>(*this) < static_cast<Node>(it); |
| | 643 | } |
| | 644 | |
| | 645 | private: |
| | 646 | const BellmanFord* _algorithm; |
| | 647 | int _index; |
| | 648 | }; |
| | 649 | |
| | 650 | typedef PredMapPath<Digraph, PredMap> Path; |
| | 651 | |
| | 652 | /// \brief Gives back the shortest path. |
| | 653 | /// |
| | 654 | /// Gives back the shortest path. |
| | 655 | /// \pre The \c t should be reachable from the source. |
| | 656 | Path path(Node t) |
| | 657 | { |
| | 658 | return Path(*digraph, *_pred, t); |
| | 659 | } |
| | 660 | |
| | 661 | |
| | 662 | // TODO : implement negative cycle |
| | 663 | // /// \brief Gives back a negative cycle. |
| | 664 | // /// |
| | 665 | // /// This function gives back a negative cycle. |
| | 666 | // /// If the algorithm have not found yet negative cycle it will give back |
| | 667 | // /// an empty path. |
| | 668 | // Path negativeCycle() { |
| | 669 | // typename Digraph::template NodeMap<int> state(*digraph, 0); |
| | 670 | // for (ActiveIt it(*this); it != INVALID; ++it) { |
| | 671 | // if (state[it] == 0) { |
| | 672 | // for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
| | 673 | // if (state[t] == 0) { |
| | 674 | // state[t] = 1; |
| | 675 | // } else if (state[t] == 2) { |
| | 676 | // break; |
| | 677 | // } else { |
| | 678 | // p.clear(); |
| | 679 | // typename Path::Builder b(p); |
| | 680 | // b.setStartNode(t); |
| | 681 | // b.pushFront(predArc(t)); |
| | 682 | // for(Node s = predNode(t); s != t; s = predNode(s)) { |
| | 683 | // b.pushFront(predArc(s)); |
| | 684 | // } |
| | 685 | // b.commit(); |
| | 686 | // return true; |
| | 687 | // } |
| | 688 | // } |
| | 689 | // for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
| | 690 | // if (state[t] == 1) { |
| | 691 | // state[t] = 2; |
| | 692 | // } else { |
| | 693 | // break; |
| | 694 | // } |
| | 695 | // } |
| | 696 | // } |
| | 697 | // } |
| | 698 | // return false; |
| | 699 | // } |
| | 700 | |
| | 701 | /// \brief The distance of a node from the root. |
| | 702 | /// |
| | 703 | /// Returns the distance of a node from the root. |
| | 704 | /// \pre \ref run() must be called before using this function. |
| | 705 | /// \warning If node \c v in unreachable from the root the return value |
| | 706 | /// of this funcion is undefined. |
| | 707 | Value dist(Node v) const { return (*_dist)[v]; } |
| | 708 | |
| | 709 | /// \brief Returns the 'previous arc' of the shortest path tree. |
| | 710 | /// |
| | 711 | /// For a node \c v it returns the 'previous arc' of the shortest path |
| | 712 | /// tree, i.e. it returns the last arc of a shortest path from the root |
| | 713 | /// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
| | 714 | /// if \c v=s. The shortest path tree used here is equal to the shortest |
| | 715 | /// path tree used in \ref predNode(). |
| | 716 | /// \pre \ref run() must be called before using |
| | 717 | /// this function. |
| | 718 | Arc predArc(Node v) const { return (*_pred)[v]; } |
| | 719 | |
| | 720 | /// \brief Returns the 'previous node' of the shortest path tree. |
| | 721 | /// |
| | 722 | /// For a node \c v it returns the 'previous node' of the shortest path |
| | 723 | /// tree, i.e. it returns the last but one node from a shortest path from |
| | 724 | /// the root to \c /v. It is INVALID if \c v is unreachable from the root |
| | 725 | /// or if \c v=s. The shortest path tree used here is equal to the |
| | 726 | /// shortest path tree used in \ref predArc(). \pre \ref run() must be |
| | 727 | /// called before using this function. |
| | 728 | Node predNode(Node v) const { |
| | 729 | return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); |
| | 730 | } |
| | 731 | |
| | 732 | /// \brief Returns a reference to the NodeMap of distances. |
| | 733 | /// |
| | 734 | /// Returns a reference to the NodeMap of distances. \pre \ref run() must |
| | 735 | /// be called before using this function. |
| | 736 | const DistMap &distMap() const { return *_dist;} |
| | 737 | |
| | 738 | /// \brief Returns a reference to the shortest path tree map. |
| | 739 | /// |
| | 740 | /// Returns a reference to the NodeMap of the arcs of the |
| | 741 | /// shortest path tree. |
| | 742 | /// \pre \ref run() must be called before using this function. |
| | 743 | const PredMap &predMap() const { return *_pred; } |
| | 744 | |
| | 745 | /// \brief Checks if a node is reachable from the root. |
| | 746 | /// |
| | 747 | /// Returns \c true if \c v is reachable from the root. |
| | 748 | /// \pre \ref run() must be called before using this function. |
| | 749 | /// |
| | 750 | bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); } |
| | 751 | |
| | 752 | ///@} |
| | 753 | }; |
| | 754 | |
| | 755 | /// \brief Default traits class of BellmanFord function. |
| | 756 | /// |
| | 757 | /// Default traits class of BellmanFord function. |
| | 758 | /// \param _Digraph Digraph type. |
| | 759 | /// \param _LengthMap Type of length map. |
| | 760 | template <typename _Digraph, typename _LengthMap> |
| | 761 | struct BellmanFordWizardDefaultTraits { |
| | 762 | /// \brief The digraph type the algorithm runs on. |
| | 763 | typedef _Digraph Digraph; |
| | 764 | |
| | 765 | /// \brief The type of the map that stores the arc lengths. |
| | 766 | /// |
| | 767 | /// The type of the map that stores the arc lengths. |
| | 768 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| | 769 | typedef _LengthMap LengthMap; |
| | 770 | |
| | 771 | /// \brief The value type of the length map. |
| | 772 | typedef typename _LengthMap::Value Value; |
| | 773 | |
| | 774 | /// \brief Operation traits for Bellman-Ford algorithm. |
| | 775 | /// |
| | 776 | /// It defines the infinity type on the given Value type |
| | 777 | /// and the used operation. |
| | 778 | /// \see BellmanFordDefaultOperationTraits |
| | 779 | typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| | 780 | |
| | 781 | /// \brief The type of the map that stores the last |
| | 782 | /// arcs of the shortest paths. |
| | 783 | /// |
| | 784 | /// The type of the map that stores the last |
| | 785 | /// arcs of the shortest paths. |
| | 786 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| | 787 | typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap; |
| | 788 | |
| | 789 | /// \brief Instantiates a PredMap. |
| | 790 | /// |
| | 791 | /// This function instantiates a \ref PredMap. |
| | 792 | static PredMap *createPredMap(const _Digraph &) { |
| | 793 | return new PredMap(); |
| | 794 | } |
| | 795 | /// \brief The type of the map that stores the dists of the nodes. |
| | 796 | /// |
| | 797 | /// The type of the map that stores the dists of the nodes. |
| | 798 | /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| | 799 | typedef NullMap<typename Digraph::Node, Value> DistMap; |
| | 800 | /// \brief Instantiates a DistMap. |
| | 801 | /// |
| | 802 | /// This function instantiates a \ref DistMap. |
| | 803 | static DistMap *createDistMap(const _Digraph &) { |
| | 804 | return new DistMap(); |
| | 805 | } |
| | 806 | }; |
| | 807 | |
| | 808 | /// \brief Default traits used by \ref BellmanFordWizard |
| | 809 | /// |
| | 810 | /// To make it easier to use BellmanFord algorithm |
| | 811 | /// we have created a wizard class. |
| | 812 | /// This \ref BellmanFordWizard class needs default traits, |
| | 813 | /// as well as the \ref BellmanFord class. |
| | 814 | /// The \ref BellmanFordWizardBase is a class to be the default traits of the |
| | 815 | /// \ref BellmanFordWizard class. |
| | 816 | /// \todo More named parameters are required... |
| | 817 | template<class _Digraph,class _LengthMap> |
| | 818 | class BellmanFordWizardBase |
| | 819 | : public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> { |
| | 820 | |
| | 821 | typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base; |
| | 822 | protected: |
| | 823 | /// Type of the nodes in the digraph. |
| | 824 | typedef typename Base::Digraph::Node Node; |
| | 825 | |
| | 826 | /// Pointer to the underlying digraph. |
| | 827 | void *_graph; |
| | 828 | /// Pointer to the length map |
| | 829 | void *_length; |
| | 830 | ///Pointer to the map of predecessors arcs. |
| | 831 | void *_pred; |
| | 832 | ///Pointer to the map of distances. |
| | 833 | void *_dist; |
| | 834 | ///Pointer to the source node. |
| | 835 | Node _source; |
| | 836 | |
| | 837 | public: |
| | 838 | /// Constructor. |
| | 839 | |
| | 840 | /// This constructor does not require parameters, therefore it initiates |
| | 841 | /// all of the attributes to default values (0, INVALID). |
| | 842 | BellmanFordWizardBase() : _graph(0), _length(0), _pred(0), |
| | 843 | _dist(0), _source(INVALID) {} |
| | 844 | |
| | 845 | /// Constructor. |
| | 846 | |
| | 847 | /// This constructor requires some parameters, |
| | 848 | /// listed in the parameters list. |
| | 849 | /// Others are initiated to 0. |
| | 850 | /// \param digraph is the initial value of \ref _graph |
| | 851 | /// \param length is the initial value of \ref _length |
| | 852 | /// \param source is the initial value of \ref _source |
| | 853 | BellmanFordWizardBase(const _Digraph& digraph, |
| | 854 | const _LengthMap& length, |
| | 855 | Node source = INVALID) : |
| | 856 | _graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), |
| | 857 | _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), |
| | 858 | _pred(0), _dist(0), _source(source) {} |
| | 859 | |
| | 860 | }; |
| | 861 | |
| | 862 | /// A class to make the usage of BellmanFord algorithm easier |
| | 863 | |
| | 864 | /// This class is created to make it easier to use BellmanFord algorithm. |
| | 865 | /// It uses the functions and features of the plain \ref BellmanFord, |
| | 866 | /// but it is much simpler to use it. |
| | 867 | /// |
| | 868 | /// Simplicity means that the way to change the types defined |
| | 869 | /// in the traits class is based on functions that returns the new class |
| | 870 | /// and not on templatable built-in classes. |
| | 871 | /// When using the plain \ref BellmanFord |
| | 872 | /// the new class with the modified type comes from |
| | 873 | /// the original class by using the :: |
| | 874 | /// operator. In the case of \ref BellmanFordWizard only |
| | 875 | /// a function have to be called and it will |
| | 876 | /// return the needed class. |
| | 877 | /// |
| | 878 | /// It does not have own \ref run method. When its \ref run method is called |
| | 879 | /// it initiates a plain \ref BellmanFord class, and calls the \ref |
| | 880 | /// BellmanFord::run method of it. |
| | 881 | template<class _Traits> |
| | 882 | class BellmanFordWizard : public _Traits { |
| | 883 | typedef _Traits Base; |
| | 884 | |
| | 885 | ///The type of the underlying digraph. |
| | 886 | typedef typename _Traits::Digraph Digraph; |
| | 887 | |
| | 888 | typedef typename Digraph::Node Node; |
| | 889 | typedef typename Digraph::NodeIt NodeIt; |
| | 890 | typedef typename Digraph::Arc Arc; |
| | 891 | typedef typename Digraph::OutArcIt ArcIt; |
| | 892 | |
| | 893 | ///The type of the map that stores the arc lengths. |
| | 894 | typedef typename _Traits::LengthMap LengthMap; |
| | 895 | |
| | 896 | ///The type of the length of the arcs. |
| | 897 | typedef typename LengthMap::Value Value; |
| | 898 | |
| | 899 | ///\brief The type of the map that stores the last |
| | 900 | ///arcs of the shortest paths. |
| | 901 | typedef typename _Traits::PredMap PredMap; |
| | 902 | |
| | 903 | ///The type of the map that stores the dists of the nodes. |
| | 904 | typedef typename _Traits::DistMap DistMap; |
| | 905 | |
| | 906 | public: |
| | 907 | /// Constructor. |
| | 908 | BellmanFordWizard() : _Traits() {} |
| | 909 | |
| | 910 | /// \brief Constructor that requires parameters. |
| | 911 | /// |
| | 912 | /// Constructor that requires parameters. |
| | 913 | /// These parameters will be the default values for the traits class. |
| | 914 | BellmanFordWizard(const Digraph& digraph, const LengthMap& length, |
| | 915 | Node src = INVALID) |
| | 916 | : _Traits(digraph, length, src) {} |
| | 917 | |
| | 918 | /// \brief Copy constructor |
| | 919 | BellmanFordWizard(const _Traits &b) : _Traits(b) {} |
| | 920 | |
| | 921 | ~BellmanFordWizard() {} |
| | 922 | |
| | 923 | /// \brief Runs BellmanFord algorithm from a given node. |
| | 924 | /// |
| | 925 | /// Runs BellmanFord algorithm from a given node. |
| | 926 | /// The node can be given by the \ref source function. |
| | 927 | void run() { |
| | 928 | LEMON_ASSERT(Base::_source != INVALID, "Source node is not given"); |
| | 929 | BellmanFord<Digraph,LengthMap,_Traits> |
| | 930 | bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| | 931 | *reinterpret_cast<const LengthMap*>(Base::_length)); |
| | 932 | if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| | 933 | if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| | 934 | bf.run(Base::_source); |
| | 935 | } |
| | 936 | |
| | 937 | /// \brief Runs BellmanFord algorithm from the given node. |
| | 938 | /// |
| | 939 | /// Runs BellmanFord algorithm from the given node. |
| | 940 | /// \param src is the given source. |
| | 941 | void run(Node src) { |
| | 942 | Base::_source = src; |
| | 943 | run(); |
| | 944 | } |
| | 945 | |
| | 946 | template<class T> |
| | 947 | struct DefPredMapBase : public Base { |
| | 948 | typedef T PredMap; |
| | 949 | static PredMap *createPredMap(const Digraph &) { return 0; }; |
| | 950 | DefPredMapBase(const _Traits &b) : _Traits(b) {} |
| | 951 | }; |
| | 952 | |
| | 953 | ///\brief \ref named-templ-param "Named parameter" |
| | 954 | ///function for setting PredMap type |
| | 955 | /// |
| | 956 | /// \ref named-templ-param "Named parameter" |
| | 957 | ///function for setting PredMap type |
| | 958 | /// |
| | 959 | template<class T> |
| | 960 | BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) |
| | 961 | { |
| | 962 | Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| | 963 | return BellmanFordWizard<DefPredMapBase<T> >(*this); |
| | 964 | } |
| | 965 | |
| | 966 | template<class T> |
| | 967 | struct DefDistMapBase : public Base { |
| | 968 | typedef T DistMap; |
| | 969 | static DistMap *createDistMap(const Digraph &) { return 0; }; |
| | 970 | DefDistMapBase(const _Traits &b) : _Traits(b) {} |
| | 971 | }; |
| | 972 | |
| | 973 | ///\brief \ref named-templ-param "Named parameter" |
| | 974 | ///function for setting DistMap type |
| | 975 | /// |
| | 976 | /// \ref named-templ-param "Named parameter" |
| | 977 | ///function for setting DistMap type |
| | 978 | /// |
| | 979 | template<class T> |
| | 980 | BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) { |
| | 981 | Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| | 982 | return BellmanFordWizard<DefDistMapBase<T> >(*this); |
| | 983 | } |
| | 984 | |
| | 985 | template<class T> |
| | 986 | struct DefOperationTraitsBase : public Base { |
| | 987 | typedef T OperationTraits; |
| | 988 | DefOperationTraitsBase(const _Traits &b) : _Traits(b) {} |
| | 989 | }; |
| | 990 | |
| | 991 | ///\brief \ref named-templ-param "Named parameter" |
| | 992 | ///function for setting OperationTraits type |
| | 993 | /// |
| | 994 | /// \ref named-templ-param "Named parameter" |
| | 995 | ///function for setting OperationTraits type |
| | 996 | /// |
| | 997 | template<class T> |
| | 998 | BellmanFordWizard<DefOperationTraitsBase<T> > distMap() { |
| | 999 | return BellmanFordWizard<DefDistMapBase<T> >(*this); |
| | 1000 | } |
| | 1001 | |
| | 1002 | /// \brief Sets the source node, from which the BellmanFord algorithm runs. |
| | 1003 | /// |
| | 1004 | /// Sets the source node, from which the BellmanFord algorithm runs. |
| | 1005 | /// \param src is the source node. |
| | 1006 | BellmanFordWizard<_Traits>& source(Node src) { |
| | 1007 | Base::_source = src; |
| | 1008 | return *this; |
| | 1009 | } |
| | 1010 | |
| | 1011 | }; |
| | 1012 | |
| | 1013 | /// \brief Function type interface for BellmanFord algorithm. |
| | 1014 | /// |
| | 1015 | /// \ingroup shortest_path |
| | 1016 | /// Function type interface for BellmanFord algorithm. |
| | 1017 | /// |
| | 1018 | /// This function also has several \ref named-templ-func-param |
| | 1019 | /// "named parameters", they are declared as the members of class |
| | 1020 | /// \ref BellmanFordWizard. |
| | 1021 | /// The following |
| | 1022 | /// example shows how to use these parameters. |
| | 1023 | ///\code |
| | 1024 | /// bellmanford(g,length,source).predMap(preds).run(); |
| | 1025 | ///\endcode |
| | 1026 | /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
| | 1027 | /// to the end of the parameter list. |
| | 1028 | /// \sa BellmanFordWizard |
| | 1029 | /// \sa BellmanFord |
| | 1030 | template<class _Digraph, class _LengthMap> |
| | 1031 | BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
| | 1032 | bellmanFord(const _Digraph& digraph, |
| | 1033 | const _LengthMap& length, |
| | 1034 | typename _Digraph::Node source = INVALID) { |
| | 1035 | return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
| | 1036 | (digraph, length, source); |
| | 1037 | } |
| | 1038 | |
| | 1039 | } //END OF NAMESPACE LEMON |
| | 1040 | |
| | 1041 | #endif |
| | 1042 | |