| 1 | /* -*- C++ -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
| 4 | * |
| 5 | * Copyright (C) 2003-2008 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_TIME_MEASURE_H |
| 20 | #define LEMON_TIME_MEASURE_H |
| 21 | |
| 22 | ///\ingroup timecount |
| 23 | ///\file |
| 24 | ///\brief Tools for measuring cpu usage |
| 25 | |
| 26 | #include <sys/times.h> |
| 27 | |
| 28 | #include <sys/time.h> |
| 29 | #include <fstream> |
| 30 | #include <iostream> |
| 31 | #include <unistd.h> |
| 32 | |
| 33 | namespace lemon { |
| 34 | |
| 35 | /// \addtogroup timecount |
| 36 | /// @{ |
| 37 | |
| 38 | /// A class to store (cpu)time instances. |
| 39 | |
| 40 | /// This class stores five time values. |
| 41 | /// - a real time |
| 42 | /// - a user cpu time |
| 43 | /// - a system cpu time |
| 44 | /// - a user cpu time of children |
| 45 | /// - a system cpu time of children |
| 46 | /// |
| 47 | /// TimeStamp's can be added to or substracted from each other and |
| 48 | /// they can be pushed to a stream. |
| 49 | /// |
| 50 | /// In most cases, perhaps the \ref Timer or the \ref TimeReport |
| 51 | /// class is what you want to use instead. |
| 52 | /// |
| 53 | ///\author Alpar Juttner |
| 54 | |
| 55 | class TimeStamp |
| 56 | { |
| 57 | struct rtms |
| 58 | { |
| 59 | double tms_utime; |
| 60 | double tms_stime; |
| 61 | double tms_cutime; |
| 62 | double tms_cstime; |
| 63 | rtms() {} |
| 64 | rtms(tms ts) : tms_utime(ts.tms_utime), tms_stime(ts.tms_stime), |
| 65 | tms_cutime(ts.tms_cutime), tms_cstime(ts.tms_cstime) {} |
| 66 | }; |
| 67 | rtms ts; |
| 68 | double real_time; |
| 69 | |
| 70 | rtms &getTms() {return ts;} |
| 71 | const rtms &getTms() const {return ts;} |
| 72 | |
| 73 | void _reset() { |
| 74 | ts.tms_utime = ts.tms_stime = ts.tms_cutime = ts.tms_cstime = 0; |
| 75 | real_time = 0; |
| 76 | } |
| 77 | |
| 78 | public: |
| 79 | |
| 80 | ///Read the current time values of the process |
| 81 | void stamp() |
| 82 | { |
| 83 | timeval tv; |
| 84 | tms _ts; |
| 85 | times(&_ts); |
| 86 | gettimeofday(&tv, 0);real_time=tv.tv_sec+double(tv.tv_usec)/1e6; |
| 87 | ts=_ts; |
| 88 | } |
| 89 | |
| 90 | /// Constructor initializing with zero |
| 91 | TimeStamp() |
| 92 | { _reset(); } |
| 93 | ///Constructor initializing with the current time values of the process |
| 94 | TimeStamp(void *) { stamp();} |
| 95 | |
| 96 | ///Set every time value to zero |
| 97 | TimeStamp &reset() {_reset();return *this;} |
| 98 | |
| 99 | ///\e |
| 100 | TimeStamp &operator+=(const TimeStamp &b) |
| 101 | { |
| 102 | ts.tms_utime+=b.ts.tms_utime; |
| 103 | ts.tms_stime+=b.ts.tms_stime; |
| 104 | ts.tms_cutime+=b.ts.tms_cutime; |
| 105 | ts.tms_cstime+=b.ts.tms_cstime; |
| 106 | real_time+=b.real_time; |
| 107 | return *this; |
| 108 | } |
| 109 | ///\e |
| 110 | TimeStamp operator+(const TimeStamp &b) const |
| 111 | { |
| 112 | TimeStamp t(*this); |
| 113 | return t+=b; |
| 114 | } |
| 115 | ///\e |
| 116 | TimeStamp &operator-=(const TimeStamp &b) |
| 117 | { |
| 118 | ts.tms_utime-=b.ts.tms_utime; |
| 119 | ts.tms_stime-=b.ts.tms_stime; |
| 120 | ts.tms_cutime-=b.ts.tms_cutime; |
| 121 | ts.tms_cstime-=b.ts.tms_cstime; |
| 122 | real_time-=b.real_time; |
| 123 | return *this; |
| 124 | } |
| 125 | ///\e |
| 126 | TimeStamp operator-(const TimeStamp &b) const |
| 127 | { |
| 128 | TimeStamp t(*this); |
| 129 | return t-=b; |
| 130 | } |
| 131 | ///\e |
| 132 | TimeStamp &operator*=(double b) |
| 133 | { |
| 134 | ts.tms_utime*=b; |
| 135 | ts.tms_stime*=b; |
| 136 | ts.tms_cutime*=b; |
| 137 | ts.tms_cstime*=b; |
| 138 | real_time*=b; |
| 139 | return *this; |
| 140 | } |
| 141 | ///\e |
| 142 | TimeStamp operator*(double b) const |
| 143 | { |
| 144 | TimeStamp t(*this); |
| 145 | return t*=b; |
| 146 | } |
| 147 | friend TimeStamp operator*(double b,const TimeStamp &t); |
| 148 | ///\e |
| 149 | TimeStamp &operator/=(double b) |
| 150 | { |
| 151 | ts.tms_utime/=b; |
| 152 | ts.tms_stime/=b; |
| 153 | ts.tms_cutime/=b; |
| 154 | ts.tms_cstime/=b; |
| 155 | real_time/=b; |
| 156 | return *this; |
| 157 | } |
| 158 | ///\e |
| 159 | TimeStamp operator/(double b) const |
| 160 | { |
| 161 | TimeStamp t(*this); |
| 162 | return t/=b; |
| 163 | } |
| 164 | ///The time ellapsed since the last call of stamp() |
| 165 | TimeStamp ellapsed() const |
| 166 | { |
| 167 | TimeStamp t(NULL); |
| 168 | return t-*this; |
| 169 | } |
| 170 | |
| 171 | friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
| 172 | |
| 173 | ///Gives back the user time of the process |
| 174 | double userTime() const |
| 175 | { |
| 176 | return double(ts.tms_utime)/sysconf(_SC_CLK_TCK); |
| 177 | } |
| 178 | ///Gives back the system time of the process |
| 179 | double systemTime() const |
| 180 | { |
| 181 | return double(ts.tms_stime)/sysconf(_SC_CLK_TCK); |
| 182 | } |
| 183 | ///Gives back the user time of the process' children |
| 184 | double cUserTime() const |
| 185 | { |
| 186 | return double(ts.tms_cutime)/sysconf(_SC_CLK_TCK); |
| 187 | } |
| 188 | ///Gives back the user time of the process' children |
| 189 | double cSystemTime() const |
| 190 | { |
| 191 | return double(ts.tms_cstime)/sysconf(_SC_CLK_TCK); |
| 192 | } |
| 193 | ///Gives back the real time |
| 194 | double realTime() const {return real_time;} |
| 195 | }; |
| 196 | |
| 197 | TimeStamp operator*(double b,const TimeStamp &t) |
| 198 | { |
| 199 | return t*b; |
| 200 | } |
| 201 | |
| 202 | ///Prints the time counters |
| 203 | |
| 204 | ///Prints the time counters in the following form: |
| 205 | /// |
| 206 | /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
| 207 | /// |
| 208 | /// where the values are the |
| 209 | /// \li \c u: user cpu time, |
| 210 | /// \li \c s: system cpu time, |
| 211 | /// \li \c cu: user cpu time of children, |
| 212 | /// \li \c cs: system cpu time of children, |
| 213 | /// \li \c real: real time. |
| 214 | /// \relates TimeStamp |
| 215 | inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
| 216 | { |
| 217 | long cls = sysconf(_SC_CLK_TCK); |
| 218 | os << "u: " << double(t.getTms().tms_utime)/cls << |
| 219 | "s, s: " << double(t.getTms().tms_stime)/cls << |
| 220 | "s, cu: " << double(t.getTms().tms_cutime)/cls << |
| 221 | "s, cs: " << double(t.getTms().tms_cstime)/cls << |
| 222 | "s, real: " << t.realTime() << "s"; |
| 223 | return os; |
| 224 | } |
| 225 | |
| 226 | ///Class for measuring the cpu time and real time usage of the process |
| 227 | |
| 228 | ///Class for measuring the cpu time and real time usage of the process. |
| 229 | ///It is quite easy-to-use, here is a short example. |
| 230 | ///\code |
| 231 | /// #include<lemon/time_measure.h> |
| 232 | /// #include<iostream> |
| 233 | /// |
| 234 | /// int main() |
| 235 | /// { |
| 236 | /// |
| 237 | /// ... |
| 238 | /// |
| 239 | /// Timer t; |
| 240 | /// doSomething(); |
| 241 | /// std::cout << t << '\n'; |
| 242 | /// t.restart(); |
| 243 | /// doSomethingElse(); |
| 244 | /// std::cout << t << '\n'; |
| 245 | /// |
| 246 | /// ... |
| 247 | /// |
| 248 | /// } |
| 249 | ///\endcode |
| 250 | /// |
| 251 | ///The \ref Timer can also be \ref stop() "stopped" and |
| 252 | ///\ref start() "started" again, so it is possible to compute collected |
| 253 | ///running times. |
| 254 | /// |
| 255 | ///\warning Depending on the operation system and its actual configuration |
| 256 | ///the time counters have a certain (10ms on a typical Linux system) |
| 257 | ///granularity. |
| 258 | ///Therefore this tool is not appropriate to measure very short times. |
| 259 | ///Also, if you start and stop the timer very frequently, it could lead to |
| 260 | ///distorted results. |
| 261 | /// |
| 262 | ///\note If you want to measure the running time of the execution of a certain |
| 263 | ///function, consider the usage of \ref TimeReport instead. |
| 264 | /// |
| 265 | ///\todo This shouldn't be Unix (Linux) specific. |
| 266 | ///\sa TimeReport |
| 267 | /// |
| 268 | ///\author Alpar Juttner |
| 269 | class Timer |
| 270 | { |
| 271 | int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
| 272 | TimeStamp start_time; //This is the relativ start-time if the timer |
| 273 | //is _running, the collected _running time otherwise. |
| 274 | |
| 275 | void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
| 276 | |
| 277 | public: |
| 278 | ///Constructor. |
| 279 | |
| 280 | ///\param run indicates whether or not the timer starts immediately. |
| 281 | /// |
| 282 | Timer(bool run=true) :_running(run) {_reset();} |
| 283 | |
| 284 | ///\name Control the state of the timer |
| 285 | ///Basically a Timer can be either running or stopped, |
| 286 | ///but it provides a bit finer control on the execution. |
| 287 | ///The \ref Timer also counts the number of \ref start() |
| 288 | ///executions, and is stops only after the same amount (or more) |
| 289 | ///\ref stop() "stop()"s. This can be useful e.g. to compute the running time |
| 290 | ///of recursive functions. |
| 291 | /// |
| 292 | |
| 293 | ///@{ |
| 294 | |
| 295 | ///Reset and stop the time counters |
| 296 | |
| 297 | ///This function resets and stops the time counters |
| 298 | ///\sa restart() |
| 299 | void reset() |
| 300 | { |
| 301 | _running=0; |
| 302 | _reset(); |
| 303 | } |
| 304 | |
| 305 | ///Start the time counters |
| 306 | |
| 307 | ///This function starts the time counters. |
| 308 | /// |
| 309 | ///If the timer is started more than ones, it will remain running |
| 310 | ///until the same amount of \ref stop() is called. |
| 311 | ///\sa stop() |
| 312 | void start() |
| 313 | { |
| 314 | if(_running) _running++; |
| 315 | else { |
| 316 | _running=1; |
| 317 | TimeStamp t; |
| 318 | t.stamp(); |
| 319 | start_time=t-start_time; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | |
| 324 | ///Stop the time counters |
| 325 | |
| 326 | ///This function stops the time counters. If start() was executed more than |
| 327 | ///once, then the same number of stop() execution is necessary the really |
| 328 | ///stop the timer. |
| 329 | /// |
| 330 | ///\sa halt() |
| 331 | ///\sa start() |
| 332 | ///\sa restart() |
| 333 | ///\sa reset() |
| 334 | |
| 335 | void stop() |
| 336 | { |
| 337 | if(_running && !--_running) { |
| 338 | TimeStamp t; |
| 339 | t.stamp(); |
| 340 | start_time=t-start_time; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | ///Halt (i.e stop immediately) the time counters |
| 345 | |
| 346 | ///This function stops immediately the time counters, i.e. <tt>t.stop()</tt> |
| 347 | ///is a faster |
| 348 | ///equivalent of the following. |
| 349 | ///\code |
| 350 | /// while(t.running()) t.stop() |
| 351 | ///\endcode |
| 352 | /// |
| 353 | /// |
| 354 | ///\sa stop() |
| 355 | ///\sa restart() |
| 356 | ///\sa reset() |
| 357 | |
| 358 | void halt() |
| 359 | { |
| 360 | if(_running) { |
| 361 | _running=0; |
| 362 | TimeStamp t; |
| 363 | t.stamp(); |
| 364 | start_time=t-start_time; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | ///Returns the running state of the timer |
| 369 | |
| 370 | ///This function returns the number of stop() exections that is |
| 371 | ///necessary to really stop the timer. |
| 372 | ///For example the timer |
| 373 | ///is running if and only if the return value is \c true |
| 374 | ///(i.e. greater than |
| 375 | ///zero). |
| 376 | int running() { return _running; } |
| 377 | |
| 378 | |
| 379 | ///Restart the time counters |
| 380 | |
| 381 | ///This function is a shorthand for |
| 382 | ///a reset() and a start() calls. |
| 383 | /// |
| 384 | void restart() |
| 385 | { |
| 386 | reset(); |
| 387 | start(); |
| 388 | } |
| 389 | |
| 390 | ///@} |
| 391 | |
| 392 | ///\name Query Functions for the ellapsed time |
| 393 | |
| 394 | ///@{ |
| 395 | |
| 396 | ///Gives back the ellapsed user time of the process |
| 397 | double userTime() const |
| 398 | { |
| 399 | return operator TimeStamp().userTime(); |
| 400 | } |
| 401 | ///Gives back the ellapsed system time of the process |
| 402 | double systemTime() const |
| 403 | { |
| 404 | return operator TimeStamp().systemTime(); |
| 405 | } |
| 406 | ///Gives back the ellapsed user time of the process' children |
| 407 | double cUserTime() const |
| 408 | { |
| 409 | return operator TimeStamp().cUserTime(); |
| 410 | } |
| 411 | ///Gives back the ellapsed user time of the process' children |
| 412 | double cSystemTime() const |
| 413 | { |
| 414 | return operator TimeStamp().cSystemTime(); |
| 415 | } |
| 416 | ///Gives back the ellapsed real time |
| 417 | double realTime() const |
| 418 | { |
| 419 | return operator TimeStamp().realTime(); |
| 420 | } |
| 421 | ///Computes the ellapsed time |
| 422 | |
| 423 | ///This conversion computes the ellapsed time, therefore you can print |
| 424 | ///the ellapsed time like this. |
| 425 | ///\code |
| 426 | /// Timer t; |
| 427 | /// doSomething(); |
| 428 | /// std::cout << t << '\n'; |
| 429 | ///\endcode |
| 430 | operator TimeStamp () const |
| 431 | { |
| 432 | TimeStamp t; |
| 433 | t.stamp(); |
| 434 | return _running?t-start_time:start_time; |
| 435 | } |
| 436 | |
| 437 | |
| 438 | ///@} |
| 439 | }; |
| 440 | |
| 441 | ///Same as \ref Timer but prints a report on destruction. |
| 442 | |
| 443 | ///Same as \ref Timer but prints a report on destruction. |
| 444 | ///This example shows its usage. |
| 445 | ///\code |
| 446 | /// void myAlg(ListGraph &g,int n) |
| 447 | /// { |
| 448 | /// TimeReport tr("Running time of myAlg: "); |
| 449 | /// ... //Here comes the algorithm |
| 450 | /// } |
| 451 | ///\endcode |
| 452 | /// |
| 453 | ///\sa Timer |
| 454 | ///\sa NoTimeReport |
| 455 | ///\todo There is no test case for this |
| 456 | class TimeReport : public Timer |
| 457 | { |
| 458 | std::string _title; |
| 459 | std::ostream &_os; |
| 460 | public: |
| 461 | ///\e |
| 462 | |
| 463 | ///\param title This text will be printed before the ellapsed time. |
| 464 | ///\param os The stream to print the report to. |
| 465 | ///\param run Sets whether the timer should start immediately. |
| 466 | |
| 467 | TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
| 468 | : Timer(run), _title(title), _os(os){} |
| 469 | ///\e Prints the ellapsed time on destruction. |
| 470 | ~TimeReport() |
| 471 | { |
| 472 | _os << _title << *this << std::endl; |
| 473 | } |
| 474 | }; |
| 475 | |
| 476 | ///'Do nothing' version of \ref TimeReport |
| 477 | |
| 478 | ///\sa TimeReport |
| 479 | /// |
| 480 | class NoTimeReport |
| 481 | { |
| 482 | public: |
| 483 | ///\e |
| 484 | NoTimeReport(std::string,std::ostream &,bool) {} |
| 485 | ///\e |
| 486 | NoTimeReport(std::string,std::ostream &) {} |
| 487 | ///\e |
| 488 | NoTimeReport(std::string) {} |
| 489 | ///\e Do nothing. |
| 490 | ~NoTimeReport() {} |
| 491 | |
| 492 | operator TimeStamp () const { return TimeStamp(); } |
| 493 | void reset() {} |
| 494 | void start() {} |
| 495 | void stop() {} |
| 496 | void halt() {} |
| 497 | int running() { return 0; } |
| 498 | void restart() {} |
| 499 | double userTime() const { return 0; } |
| 500 | double systemTime() const { return 0; } |
| 501 | double cUserTime() const { return 0; } |
| 502 | double cSystemTime() const { return 0; } |
| 503 | double realTime() const { return 0; } |
| 504 | }; |
| 505 | |
| 506 | ///Tool to measure the running time more exactly. |
| 507 | |
| 508 | ///This function calls \c f several times and returns the average |
| 509 | ///running time. The number of the executions will be choosen in such a way |
| 510 | ///that the full real running time will be roughly between \c min_time |
| 511 | ///and <tt>2*min_time</tt>. |
| 512 | ///\param f the function object to be measured. |
| 513 | ///\param min_time the minimum total running time. |
| 514 | ///\retval num if it is not \c NULL, then the actual |
| 515 | /// number of execution of \c f will be written into <tt>*num</tt>. |
| 516 | ///\retval full_time if it is not \c NULL, then the actual |
| 517 | /// total running time will be written into <tt>*full_time</tt>. |
| 518 | ///\return The average running time of \c f. |
| 519 | |
| 520 | template<class F> |
| 521 | TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
| 522 | TimeStamp *full_time=NULL) |
| 523 | { |
| 524 | TimeStamp full; |
| 525 | unsigned int total=0; |
| 526 | Timer t; |
| 527 | for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) { |
| 528 | for(;total<tn;total++) f(); |
| 529 | full=t; |
| 530 | } |
| 531 | if(num) *num=total; |
| 532 | if(full_time) *full_time=full; |
| 533 | return full/total; |
| 534 | } |
| 535 | |
| 536 | /// @} |
| 537 | |
| 538 | |
| 539 | } //namespace lemon |
| 540 | |
| 541 | #endif //LEMON_TIME_MEASURE_H |