| | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2010 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_NAGAMOCHI_IBARAKI_H |
| | 20 | #define LEMON_NAGAMOCHI_IBARAKI_H |
| | 21 | |
| | 22 | |
| | 23 | /// \ingroup min_cut |
| | 24 | /// \file |
| | 25 | /// \brief Implementation of the Nagamochi-Ibaraki algorithm. |
| | 26 | |
| | 27 | #include <lemon/core.h> |
| | 28 | #include <lemon/bin_heap.h> |
| | 29 | #include <lemon/bucket_heap.h> |
| | 30 | #include <lemon/maps.h> |
| | 31 | #include <lemon/radix_sort.h> |
| | 32 | #include <lemon/unionfind.h> |
| | 33 | |
| | 34 | #include <cassert> |
| | 35 | |
| | 36 | namespace lemon { |
| | 37 | |
| | 38 | /// \brief Default traits class for NagamochiIbaraki class. |
| | 39 | /// |
| | 40 | /// Default traits class for NagamochiIbaraki class. |
| | 41 | /// \param GR The undirected graph type. |
| | 42 | /// \param CM Type of capacity map. |
| | 43 | template <typename GR, typename CM> |
| | 44 | struct NagamochiIbarakiDefaultTraits { |
| | 45 | /// The type of the capacity map. |
| | 46 | typedef typename CM::Value Value; |
| | 47 | |
| | 48 | /// The undirected graph type the algorithm runs on. |
| | 49 | typedef GR Graph; |
| | 50 | |
| | 51 | /// \brief The type of the map that stores the edge capacities. |
| | 52 | /// |
| | 53 | /// The type of the map that stores the edge capacities. |
| | 54 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| | 55 | typedef CM CapacityMap; |
| | 56 | |
| | 57 | /// \brief Instantiates a CapacityMap. |
| | 58 | /// |
| | 59 | /// This function instantiates a \ref CapacityMap. |
| | 60 | #ifdef DOXYGEN |
| | 61 | static CapacityMap *createCapacityMap(const Graph& graph) |
| | 62 | #else |
| | 63 | static CapacityMap *createCapacityMap(const Graph&) |
| | 64 | #endif |
| | 65 | { |
| | 66 | LEMON_ASSERT(false, "CapacityMap is not initialized"); |
| | 67 | return 0; // ignore warnings |
| | 68 | } |
| | 69 | |
| | 70 | /// \brief The cross reference type used by heap. |
| | 71 | /// |
| | 72 | /// The cross reference type used by heap. |
| | 73 | /// Usually \c Graph::NodeMap<int>. |
| | 74 | typedef typename Graph::template NodeMap<int> HeapCrossRef; |
| | 75 | |
| | 76 | /// \brief Instantiates a HeapCrossRef. |
| | 77 | /// |
| | 78 | /// This function instantiates a \ref HeapCrossRef. |
| | 79 | /// \param g is the graph, to which we would like to define the |
| | 80 | /// \ref HeapCrossRef. |
| | 81 | static HeapCrossRef *createHeapCrossRef(const Graph& g) { |
| | 82 | return new HeapCrossRef(g); |
| | 83 | } |
| | 84 | |
| | 85 | /// \brief The heap type used by NagamochiIbaraki algorithm. |
| | 86 | /// |
| | 87 | /// The heap type used by NagamochiIbaraki algorithm. It has to |
| | 88 | /// maximize the priorities. |
| | 89 | /// |
| | 90 | /// \sa BinHeap |
| | 91 | /// \sa NagamochiIbaraki |
| | 92 | typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap; |
| | 93 | |
| | 94 | /// \brief Instantiates a Heap. |
| | 95 | /// |
| | 96 | /// This function instantiates a \ref Heap. |
| | 97 | /// \param r is the cross reference of the heap. |
| | 98 | static Heap *createHeap(HeapCrossRef& r) { |
| | 99 | return new Heap(r); |
| | 100 | } |
| | 101 | }; |
| | 102 | |
| | 103 | /// \ingroup min_cut |
| | 104 | /// |
| | 105 | /// \brief Calculates the minimum cut in an undirected graph. |
| | 106 | /// |
| | 107 | /// Calculates the minimum cut in an undirected graph with the |
| | 108 | /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's |
| | 109 | /// nodes into two partitions with the minimum sum of edge capacities |
| | 110 | /// between the two partitions. The algorithm can be used to test |
| | 111 | /// the network reliability, especially to test how many links have |
| | 112 | /// to be destroyed in the network to split it to at least two |
| | 113 | /// distinict subnetworks. |
| | 114 | /// |
| | 115 | /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with |
| | 116 | /// \ref FibHeap "Fibonacci heap" it can be decreased to |
| | 117 | /// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities, |
| | 118 | /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time |
| | 119 | /// complexity. |
| | 120 | /// |
| | 121 | /// \warning The value type of the capacity map should be able to |
| | 122 | /// hold any cut value of the graph, otherwise the result can |
| | 123 | /// overflow. |
| | 124 | /// \note This capacity is supposed to be integer type. |
| | 125 | #ifdef DOXYGEN |
| | 126 | template <typename GR, typename CM, typename TR> |
| | 127 | #else |
| | 128 | template <typename GR, |
| | 129 | typename CM = typename GR::template EdgeMap<int>, |
| | 130 | typename TR = NagamochiIbarakiDefaultTraits<GR, CM> > |
| | 131 | #endif |
| | 132 | class NagamochiIbaraki { |
| | 133 | public: |
| | 134 | |
| | 135 | typedef TR Traits; |
| | 136 | /// The type of the underlying graph. |
| | 137 | typedef typename Traits::Graph Graph; |
| | 138 | |
| | 139 | /// The type of the capacity map. |
| | 140 | typedef typename Traits::CapacityMap CapacityMap; |
| | 141 | /// The value type of the capacity map. |
| | 142 | typedef typename Traits::CapacityMap::Value Value; |
| | 143 | |
| | 144 | /// The heap type used by the algorithm. |
| | 145 | typedef typename Traits::Heap Heap; |
| | 146 | /// The cross reference type used for the heap. |
| | 147 | typedef typename Traits::HeapCrossRef HeapCrossRef; |
| | 148 | |
| | 149 | ///\name Named template parameters |
| | 150 | |
| | 151 | ///@{ |
| | 152 | |
| | 153 | struct SetUnitCapacityTraits : public Traits { |
| | 154 | typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap; |
| | 155 | static CapacityMap *createCapacityMap(const Graph&) { |
| | 156 | return new CapacityMap(); |
| | 157 | } |
| | 158 | }; |
| | 159 | |
| | 160 | /// \brief \ref named-templ-param "Named parameter" for setting |
| | 161 | /// the capacity map to a constMap<Edge, int, 1>() instance |
| | 162 | /// |
| | 163 | /// \ref named-templ-param "Named parameter" for setting |
| | 164 | /// the capacity map to a constMap<Edge, int, 1>() instance |
| | 165 | struct SetUnitCapacity |
| | 166 | : public NagamochiIbaraki<Graph, CapacityMap, |
| | 167 | SetUnitCapacityTraits> { |
| | 168 | typedef NagamochiIbaraki<Graph, CapacityMap, |
| | 169 | SetUnitCapacityTraits> Create; |
| | 170 | }; |
| | 171 | |
| | 172 | |
| | 173 | template <class H, class CR> |
| | 174 | struct SetHeapTraits : public Traits { |
| | 175 | typedef CR HeapCrossRef; |
| | 176 | typedef H Heap; |
| | 177 | static HeapCrossRef *createHeapCrossRef(int num) { |
| | 178 | LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| | 179 | return 0; // ignore warnings |
| | 180 | } |
| | 181 | static Heap *createHeap(HeapCrossRef &) { |
| | 182 | LEMON_ASSERT(false, "Heap is not initialized"); |
| | 183 | return 0; // ignore warnings |
| | 184 | } |
| | 185 | }; |
| | 186 | |
| | 187 | /// \brief \ref named-templ-param "Named parameter" for setting |
| | 188 | /// heap and cross reference type |
| | 189 | /// |
| | 190 | /// \ref named-templ-param "Named parameter" for setting heap and |
| | 191 | /// cross reference type. The heap has to maximize the priorities. |
| | 192 | template <class H, class CR = RangeMap<int> > |
| | 193 | struct SetHeap |
| | 194 | : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > { |
| | 195 | typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> > |
| | 196 | Create; |
| | 197 | }; |
| | 198 | |
| | 199 | template <class H, class CR> |
| | 200 | struct SetStandardHeapTraits : public Traits { |
| | 201 | typedef CR HeapCrossRef; |
| | 202 | typedef H Heap; |
| | 203 | static HeapCrossRef *createHeapCrossRef(int size) { |
| | 204 | return new HeapCrossRef(size); |
| | 205 | } |
| | 206 | static Heap *createHeap(HeapCrossRef &crossref) { |
| | 207 | return new Heap(crossref); |
| | 208 | } |
| | 209 | }; |
| | 210 | |
| | 211 | /// \brief \ref named-templ-param "Named parameter" for setting |
| | 212 | /// heap and cross reference type with automatic allocation |
| | 213 | /// |
| | 214 | /// \ref named-templ-param "Named parameter" for setting heap and |
| | 215 | /// cross reference type with automatic allocation. They should |
| | 216 | /// have standard constructor interfaces to be able to |
| | 217 | /// automatically created by the algorithm (i.e. the graph should |
| | 218 | /// be passed to the constructor of the cross reference and the |
| | 219 | /// cross reference should be passed to the constructor of the |
| | 220 | /// heap). However, external heap and cross reference objects |
| | 221 | /// could also be passed to the algorithm using the \ref heap() |
| | 222 | /// function before calling \ref run() or \ref init(). The heap |
| | 223 | /// has to maximize the priorities. |
| | 224 | /// \sa SetHeap |
| | 225 | template <class H, class CR = RangeMap<int> > |
| | 226 | struct SetStandardHeap |
| | 227 | : public NagamochiIbaraki<Graph, CapacityMap, |
| | 228 | SetStandardHeapTraits<H, CR> > { |
| | 229 | typedef NagamochiIbaraki<Graph, CapacityMap, |
| | 230 | SetStandardHeapTraits<H, CR> > Create; |
| | 231 | }; |
| | 232 | |
| | 233 | ///@} |
| | 234 | |
| | 235 | |
| | 236 | private: |
| | 237 | |
| | 238 | const Graph &_graph; |
| | 239 | const CapacityMap *_capacity; |
| | 240 | bool _local_capacity; // unit capacity |
| | 241 | |
| | 242 | struct ArcData { |
| | 243 | typename Graph::Node target; |
| | 244 | int prev, next; |
| | 245 | }; |
| | 246 | struct EdgeData { |
| | 247 | Value capacity; |
| | 248 | Value cut; |
| | 249 | }; |
| | 250 | |
| | 251 | struct NodeData { |
| | 252 | int first_arc; |
| | 253 | typename Graph::Node prev, next; |
| | 254 | int curr_arc; |
| | 255 | typename Graph::Node last_rep; |
| | 256 | Value sum; |
| | 257 | }; |
| | 258 | |
| | 259 | typename Graph::template NodeMap<NodeData> *_nodes; |
| | 260 | std::vector<ArcData> _arcs; |
| | 261 | std::vector<EdgeData> _edges; |
| | 262 | |
| | 263 | typename Graph::Node _first_node; |
| | 264 | int _node_num; |
| | 265 | |
| | 266 | Value _min_cut; |
| | 267 | |
| | 268 | HeapCrossRef *_heap_cross_ref; |
| | 269 | bool _local_heap_cross_ref; |
| | 270 | Heap *_heap; |
| | 271 | bool _local_heap; |
| | 272 | |
| | 273 | typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; |
| | 274 | NodeList *_next_rep; |
| | 275 | |
| | 276 | typedef typename Graph::template NodeMap<bool> MinCutMap; |
| | 277 | MinCutMap *_cut_map; |
| | 278 | |
| | 279 | void createStructures() { |
| | 280 | if (!_nodes) { |
| | 281 | _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); |
| | 282 | } |
| | 283 | if (!_capacity) { |
| | 284 | _local_capacity = true; |
| | 285 | _capacity = Traits::createCapacityMap(_graph); |
| | 286 | } |
| | 287 | if (!_heap_cross_ref) { |
| | 288 | _local_heap_cross_ref = true; |
| | 289 | _heap_cross_ref = Traits::createHeapCrossRef(_graph); |
| | 290 | } |
| | 291 | if (!_heap) { |
| | 292 | _local_heap = true; |
| | 293 | _heap = Traits::createHeap(*_heap_cross_ref); |
| | 294 | } |
| | 295 | if (!_next_rep) { |
| | 296 | _next_rep = new NodeList(_graph); |
| | 297 | } |
| | 298 | if (!_cut_map) { |
| | 299 | _cut_map = new MinCutMap(_graph); |
| | 300 | } |
| | 301 | } |
| | 302 | |
| | 303 | public : |
| | 304 | |
| | 305 | typedef NagamochiIbaraki Create; |
| | 306 | |
| | 307 | |
| | 308 | /// \brief Constructor. |
| | 309 | /// |
| | 310 | /// \param graph The graph the algorithm runs on. |
| | 311 | /// \param capacity The capacity map used by the algorithm. |
| | 312 | NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) |
| | 313 | : _graph(graph), _capacity(&capacity), _local_capacity(false), |
| | 314 | _nodes(0), _arcs(), _edges(), _min_cut(), |
| | 315 | _heap_cross_ref(0), _local_heap_cross_ref(false), |
| | 316 | _heap(0), _local_heap(false), |
| | 317 | _next_rep(0), _cut_map(0) {} |
| | 318 | |
| | 319 | /// \brief Constructor. |
| | 320 | /// |
| | 321 | /// This constructor can be used only when the Traits class |
| | 322 | /// defines how can the local capacity map be instantiated. |
| | 323 | /// If the SetUnitCapacity used the algorithm automatically |
| | 324 | /// constructs the capacity map. |
| | 325 | /// |
| | 326 | ///\param graph The graph the algorithm runs on. |
| | 327 | NagamochiIbaraki(const Graph& graph) |
| | 328 | : _graph(graph), _capacity(0), _local_capacity(false), |
| | 329 | _nodes(0), _arcs(), _edges(), _min_cut(), |
| | 330 | _heap_cross_ref(0), _local_heap_cross_ref(false), |
| | 331 | _heap(0), _local_heap(false), |
| | 332 | _next_rep(0), _cut_map(0) {} |
| | 333 | |
| | 334 | /// \brief Destructor. |
| | 335 | /// |
| | 336 | /// Destructor. |
| | 337 | ~NagamochiIbaraki() { |
| | 338 | if (_local_capacity) delete _capacity; |
| | 339 | if (_nodes) delete _nodes; |
| | 340 | if (_local_heap) delete _heap; |
| | 341 | if (_local_heap_cross_ref) delete _heap_cross_ref; |
| | 342 | if (_next_rep) delete _next_rep; |
| | 343 | if (_cut_map) delete _cut_map; |
| | 344 | } |
| | 345 | |
| | 346 | /// \brief Sets the heap and the cross reference used by algorithm. |
| | 347 | /// |
| | 348 | /// Sets the heap and the cross reference used by algorithm. |
| | 349 | /// If you don't use this function before calling \ref run(), |
| | 350 | /// it will allocate one. The destuctor deallocates this |
| | 351 | /// automatically allocated heap and cross reference, of course. |
| | 352 | /// \return <tt> (*this) </tt> |
| | 353 | NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) |
| | 354 | { |
| | 355 | if (_local_heap_cross_ref) { |
| | 356 | delete _heap_cross_ref; |
| | 357 | _local_heap_cross_ref = false; |
| | 358 | } |
| | 359 | _heap_cross_ref = &cr; |
| | 360 | if (_local_heap) { |
| | 361 | delete _heap; |
| | 362 | _local_heap = false; |
| | 363 | } |
| | 364 | _heap = &hp; |
| | 365 | return *this; |
| | 366 | } |
| | 367 | |
| | 368 | /// \name Execution control |
| | 369 | /// The simplest way to execute the algorithm is to use |
| | 370 | /// one of the member functions called \c run(). |
| | 371 | /// \n |
| | 372 | /// If you need more control on the execution, |
| | 373 | /// first you must call \ref init() and then call the start() |
| | 374 | /// or proper times the processNextPhase() member functions. |
| | 375 | |
| | 376 | ///@{ |
| | 377 | |
| | 378 | /// \brief Initializes the internal data structures. |
| | 379 | /// |
| | 380 | /// Initializes the internal data structures. |
| | 381 | void init() { |
| | 382 | createStructures(); |
| | 383 | |
| | 384 | int edge_num = countEdges(_graph); |
| | 385 | _edges.resize(edge_num); |
| | 386 | _arcs.resize(2 * edge_num); |
| | 387 | |
| | 388 | typename Graph::Node prev = INVALID; |
| | 389 | _node_num = 0; |
| | 390 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| | 391 | (*_cut_map)[n] = false; |
| | 392 | (*_next_rep)[n] = INVALID; |
| | 393 | (*_nodes)[n].last_rep = n; |
| | 394 | (*_nodes)[n].first_arc = -1; |
| | 395 | (*_nodes)[n].curr_arc = -1; |
| | 396 | (*_nodes)[n].prev = prev; |
| | 397 | if (prev != INVALID) { |
| | 398 | (*_nodes)[prev].next = n; |
| | 399 | } |
| | 400 | (*_nodes)[n].next = INVALID; |
| | 401 | (*_nodes)[n].sum = 0; |
| | 402 | prev = n; |
| | 403 | ++_node_num; |
| | 404 | } |
| | 405 | |
| | 406 | _first_node = typename Graph::NodeIt(_graph); |
| | 407 | |
| | 408 | int index = 0; |
| | 409 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| | 410 | for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) { |
| | 411 | typename Graph::Node m = _graph.target(a); |
| | 412 | |
| | 413 | if (!(n < m)) continue; |
| | 414 | |
| | 415 | (*_nodes)[n].sum += (*_capacity)[a]; |
| | 416 | (*_nodes)[m].sum += (*_capacity)[a]; |
| | 417 | |
| | 418 | int c = (*_nodes)[m].curr_arc; |
| | 419 | if (c != -1 && _arcs[c ^ 1].target == n) { |
| | 420 | _edges[c >> 1].capacity += (*_capacity)[a]; |
| | 421 | } else { |
| | 422 | _edges[index].capacity = (*_capacity)[a]; |
| | 423 | |
| | 424 | _arcs[index << 1].prev = -1; |
| | 425 | if ((*_nodes)[n].first_arc != -1) { |
| | 426 | _arcs[(*_nodes)[n].first_arc].prev = (index << 1); |
| | 427 | } |
| | 428 | _arcs[index << 1].next = (*_nodes)[n].first_arc; |
| | 429 | (*_nodes)[n].first_arc = (index << 1); |
| | 430 | _arcs[index << 1].target = m; |
| | 431 | |
| | 432 | (*_nodes)[m].curr_arc = (index << 1); |
| | 433 | |
| | 434 | _arcs[(index << 1) | 1].prev = -1; |
| | 435 | if ((*_nodes)[m].first_arc != -1) { |
| | 436 | _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1); |
| | 437 | } |
| | 438 | _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc; |
| | 439 | (*_nodes)[m].first_arc = ((index << 1) | 1); |
| | 440 | _arcs[(index << 1) | 1].target = n; |
| | 441 | |
| | 442 | ++index; |
| | 443 | } |
| | 444 | } |
| | 445 | } |
| | 446 | |
| | 447 | typename Graph::Node cut_node = INVALID; |
| | 448 | _min_cut = std::numeric_limits<Value>::max(); |
| | 449 | |
| | 450 | for (typename Graph::Node n = _first_node; |
| | 451 | n != INVALID; n = (*_nodes)[n].next) { |
| | 452 | if ((*_nodes)[n].sum < _min_cut) { |
| | 453 | cut_node = n; |
| | 454 | _min_cut = (*_nodes)[n].sum; |
| | 455 | } |
| | 456 | } |
| | 457 | (*_cut_map)[cut_node] = true; |
| | 458 | if (_min_cut == 0) { |
| | 459 | _first_node = INVALID; |
| | 460 | } |
| | 461 | } |
| | 462 | |
| | 463 | public: |
| | 464 | |
| | 465 | /// \brief Processes the next phase |
| | 466 | /// |
| | 467 | /// Processes the next phase in the algorithm. It must be called |
| | 468 | /// at most one less the number of the nodes in the graph. |
| | 469 | /// |
| | 470 | ///\return %True when the algorithm finished. |
| | 471 | bool processNextPhase() { |
| | 472 | if (_first_node == INVALID) return true; |
| | 473 | |
| | 474 | _heap->clear(); |
| | 475 | for (typename Graph::Node n = _first_node; |
| | 476 | n != INVALID; n = (*_nodes)[n].next) { |
| | 477 | (*_heap_cross_ref)[n] = Heap::PRE_HEAP; |
| | 478 | } |
| | 479 | |
| | 480 | std::vector<typename Graph::Node> order; |
| | 481 | order.reserve(_node_num); |
| | 482 | int sep = 0; |
| | 483 | |
| | 484 | Value alpha = 0; |
| | 485 | Value pmc = std::numeric_limits<Value>::max(); |
| | 486 | |
| | 487 | _heap->push(_first_node, static_cast<Value>(0)); |
| | 488 | while (!_heap->empty()) { |
| | 489 | typename Graph::Node n = _heap->top(); |
| | 490 | Value v = _heap->prio(); |
| | 491 | |
| | 492 | _heap->pop(); |
| | 493 | for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { |
| | 494 | switch (_heap->state(_arcs[a].target)) { |
| | 495 | case Heap::PRE_HEAP: |
| | 496 | { |
| | 497 | Value nv = _edges[a >> 1].capacity; |
| | 498 | _heap->push(_arcs[a].target, nv); |
| | 499 | _edges[a >> 1].cut = nv; |
| | 500 | } break; |
| | 501 | case Heap::IN_HEAP: |
| | 502 | { |
| | 503 | Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target]; |
| | 504 | _heap->decrease(_arcs[a].target, nv); |
| | 505 | _edges[a >> 1].cut = nv; |
| | 506 | } break; |
| | 507 | case Heap::POST_HEAP: |
| | 508 | break; |
| | 509 | } |
| | 510 | } |
| | 511 | |
| | 512 | alpha += (*_nodes)[n].sum; |
| | 513 | alpha -= 2 * v; |
| | 514 | |
| | 515 | order.push_back(n); |
| | 516 | if (!_heap->empty()) { |
| | 517 | if (alpha < pmc) { |
| | 518 | pmc = alpha; |
| | 519 | sep = order.size(); |
| | 520 | } |
| | 521 | } |
| | 522 | } |
| | 523 | |
| | 524 | if (static_cast<int>(order.size()) < _node_num) { |
| | 525 | _first_node = INVALID; |
| | 526 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| | 527 | (*_cut_map)[n] = false; |
| | 528 | } |
| | 529 | for (int i = 0; i < static_cast<int>(order.size()); ++i) { |
| | 530 | typename Graph::Node n = order[i]; |
| | 531 | while (n != INVALID) { |
| | 532 | (*_cut_map)[n] = true; |
| | 533 | n = (*_next_rep)[n]; |
| | 534 | } |
| | 535 | } |
| | 536 | _min_cut = 0; |
| | 537 | return true; |
| | 538 | } |
| | 539 | |
| | 540 | if (pmc < _min_cut) { |
| | 541 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| | 542 | (*_cut_map)[n] = false; |
| | 543 | } |
| | 544 | for (int i = 0; i < sep; ++i) { |
| | 545 | typename Graph::Node n = order[i]; |
| | 546 | while (n != INVALID) { |
| | 547 | (*_cut_map)[n] = true; |
| | 548 | n = (*_next_rep)[n]; |
| | 549 | } |
| | 550 | } |
| | 551 | _min_cut = pmc; |
| | 552 | } |
| | 553 | |
| | 554 | for (typename Graph::Node n = _first_node; |
| | 555 | n != INVALID; n = (*_nodes)[n].next) { |
| | 556 | bool merged = false; |
| | 557 | for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { |
| | 558 | if (!(_edges[a >> 1].cut < pmc)) { |
| | 559 | if (!merged) { |
| | 560 | for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) { |
| | 561 | (*_nodes)[_arcs[b].target].curr_arc = b; |
| | 562 | } |
| | 563 | merged = true; |
| | 564 | } |
| | 565 | typename Graph::Node m = _arcs[a].target; |
| | 566 | int nb = 0; |
| | 567 | for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) { |
| | 568 | nb = _arcs[b].next; |
| | 569 | if ((b ^ a) == 1) continue; |
| | 570 | typename Graph::Node o = _arcs[b].target; |
| | 571 | int c = (*_nodes)[o].curr_arc; |
| | 572 | if (c != -1 && _arcs[c ^ 1].target == n) { |
| | 573 | _edges[c >> 1].capacity += _edges[b >> 1].capacity; |
| | 574 | (*_nodes)[n].sum += _edges[b >> 1].capacity; |
| | 575 | if (_edges[b >> 1].cut < _edges[c >> 1].cut) { |
| | 576 | _edges[b >> 1].cut = _edges[c >> 1].cut; |
| | 577 | } |
| | 578 | if (_arcs[b ^ 1].prev != -1) { |
| | 579 | _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next; |
| | 580 | } else { |
| | 581 | (*_nodes)[o].first_arc = _arcs[b ^ 1].next; |
| | 582 | } |
| | 583 | if (_arcs[b ^ 1].next != -1) { |
| | 584 | _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev; |
| | 585 | } |
| | 586 | } else { |
| | 587 | if (_arcs[a].next != -1) { |
| | 588 | _arcs[_arcs[a].next].prev = b; |
| | 589 | } |
| | 590 | _arcs[b].next = _arcs[a].next; |
| | 591 | _arcs[b].prev = a; |
| | 592 | _arcs[a].next = b; |
| | 593 | _arcs[b ^ 1].target = n; |
| | 594 | |
| | 595 | (*_nodes)[n].sum += _edges[b >> 1].capacity; |
| | 596 | (*_nodes)[o].curr_arc = b; |
| | 597 | } |
| | 598 | } |
| | 599 | |
| | 600 | if (_arcs[a].prev != -1) { |
| | 601 | _arcs[_arcs[a].prev].next = _arcs[a].next; |
| | 602 | } else { |
| | 603 | (*_nodes)[n].first_arc = _arcs[a].next; |
| | 604 | } |
| | 605 | if (_arcs[a].next != -1) { |
| | 606 | _arcs[_arcs[a].next].prev = _arcs[a].prev; |
| | 607 | } |
| | 608 | |
| | 609 | (*_nodes)[n].sum -= _edges[a >> 1].capacity; |
| | 610 | (*_next_rep)[(*_nodes)[n].last_rep] = m; |
| | 611 | (*_nodes)[n].last_rep = (*_nodes)[m].last_rep; |
| | 612 | |
| | 613 | if ((*_nodes)[m].prev != INVALID) { |
| | 614 | (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next; |
| | 615 | } else{ |
| | 616 | _first_node = (*_nodes)[m].next; |
| | 617 | } |
| | 618 | if ((*_nodes)[m].next != INVALID) { |
| | 619 | (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev; |
| | 620 | } |
| | 621 | --_node_num; |
| | 622 | } |
| | 623 | } |
| | 624 | } |
| | 625 | |
| | 626 | if (_node_num == 1) { |
| | 627 | _first_node = INVALID; |
| | 628 | return true; |
| | 629 | } |
| | 630 | |
| | 631 | return false; |
| | 632 | } |
| | 633 | |
| | 634 | /// \brief Executes the algorithm. |
| | 635 | /// |
| | 636 | /// Executes the algorithm. |
| | 637 | /// |
| | 638 | /// \pre init() must be called |
| | 639 | void start() { |
| | 640 | while (!processNextPhase()) {} |
| | 641 | } |
| | 642 | |
| | 643 | |
| | 644 | /// \brief Runs %NagamochiIbaraki algorithm. |
| | 645 | /// |
| | 646 | /// This method runs the %Min cut algorithm |
| | 647 | /// |
| | 648 | /// \note mc.run(s) is just a shortcut of the following code. |
| | 649 | ///\code |
| | 650 | /// mc.init(); |
| | 651 | /// mc.start(); |
| | 652 | ///\endcode |
| | 653 | void run() { |
| | 654 | init(); |
| | 655 | start(); |
| | 656 | } |
| | 657 | |
| | 658 | ///@} |
| | 659 | |
| | 660 | /// \name Query Functions |
| | 661 | /// |
| | 662 | /// The result of the %NagamochiIbaraki |
| | 663 | /// algorithm can be obtained using these functions.\n |
| | 664 | /// Before the use of these functions, either run() or start() |
| | 665 | /// must be called. |
| | 666 | |
| | 667 | ///@{ |
| | 668 | |
| | 669 | /// \brief Returns the min cut value. |
| | 670 | /// |
| | 671 | /// Returns the min cut value if the algorithm finished. |
| | 672 | /// After the first processNextPhase() it is a value of a |
| | 673 | /// valid cut in the graph. |
| | 674 | Value minCutValue() const { |
| | 675 | return _min_cut; |
| | 676 | } |
| | 677 | |
| | 678 | /// \brief Returns a min cut in a NodeMap. |
| | 679 | /// |
| | 680 | /// It sets the nodes of one of the two partitions to true and |
| | 681 | /// the other partition to false. |
| | 682 | /// \param cutMap A \ref concepts::WriteMap "writable" node map with |
| | 683 | /// \c bool (or convertible) value type. |
| | 684 | template <typename CutMap> |
| | 685 | Value minCutMap(CutMap& cutMap) const { |
| | 686 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| | 687 | cutMap.set(n, (*_cut_map)[n]); |
| | 688 | } |
| | 689 | return minCutValue(); |
| | 690 | } |
| | 691 | |
| | 692 | ///@} |
| | 693 | |
| | 694 | }; |
| | 695 | } |
| | 696 | |
| | 697 | #endif |