| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2010 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_NAGAMOCHI_IBARAKI_H |
| 20 | #define LEMON_NAGAMOCHI_IBARAKI_H |
| 21 | |
| 22 | |
| 23 | /// \ingroup min_cut |
| 24 | /// \file |
| 25 | /// \brief Implementation of the Nagamochi-Ibaraki algorithm. |
| 26 | |
| 27 | #include <lemon/core.h> |
| 28 | #include <lemon/bin_heap.h> |
| 29 | #include <lemon/bucket_heap.h> |
| 30 | #include <lemon/maps.h> |
| 31 | #include <lemon/radix_sort.h> |
| 32 | #include <lemon/unionfind.h> |
| 33 | |
| 34 | #include <cassert> |
| 35 | |
| 36 | namespace lemon { |
| 37 | |
| 38 | /// \brief Default traits class for NagamochiIbaraki class. |
| 39 | /// |
| 40 | /// Default traits class for NagamochiIbaraki class. |
| 41 | /// \param GR The undirected graph type. |
| 42 | /// \param CM Type of capacity map. |
| 43 | template <typename GR, typename CM> |
| 44 | struct NagamochiIbarakiDefaultTraits { |
| 45 | /// The type of the capacity map. |
| 46 | typedef typename CM::Value Value; |
| 47 | |
| 48 | /// The undirected graph type the algorithm runs on. |
| 49 | typedef GR Graph; |
| 50 | |
| 51 | /// \brief The type of the map that stores the edge capacities. |
| 52 | /// |
| 53 | /// The type of the map that stores the edge capacities. |
| 54 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 55 | typedef CM CapacityMap; |
| 56 | |
| 57 | /// \brief Instantiates a CapacityMap. |
| 58 | /// |
| 59 | /// This function instantiates a \ref CapacityMap. |
| 60 | #ifdef DOXYGEN |
| 61 | static CapacityMap *createCapacityMap(const Graph& graph) |
| 62 | #else |
| 63 | static CapacityMap *createCapacityMap(const Graph&) |
| 64 | #endif |
| 65 | { |
| 66 | LEMON_ASSERT(false, "CapacityMap is not initialized"); |
| 67 | return 0; // ignore warnings |
| 68 | } |
| 69 | |
| 70 | /// \brief The cross reference type used by heap. |
| 71 | /// |
| 72 | /// The cross reference type used by heap. |
| 73 | /// Usually \c Graph::NodeMap<int>. |
| 74 | typedef typename Graph::template NodeMap<int> HeapCrossRef; |
| 75 | |
| 76 | /// \brief Instantiates a HeapCrossRef. |
| 77 | /// |
| 78 | /// This function instantiates a \ref HeapCrossRef. |
| 79 | /// \param g is the graph, to which we would like to define the |
| 80 | /// \ref HeapCrossRef. |
| 81 | static HeapCrossRef *createHeapCrossRef(const Graph& g) { |
| 82 | return new HeapCrossRef(g); |
| 83 | } |
| 84 | |
| 85 | /// \brief The heap type used by NagamochiIbaraki algorithm. |
| 86 | /// |
| 87 | /// The heap type used by NagamochiIbaraki algorithm. It has to |
| 88 | /// maximize the priorities. |
| 89 | /// |
| 90 | /// \sa BinHeap |
| 91 | /// \sa NagamochiIbaraki |
| 92 | typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap; |
| 93 | |
| 94 | /// \brief Instantiates a Heap. |
| 95 | /// |
| 96 | /// This function instantiates a \ref Heap. |
| 97 | /// \param r is the cross reference of the heap. |
| 98 | static Heap *createHeap(HeapCrossRef& r) { |
| 99 | return new Heap(r); |
| 100 | } |
| 101 | }; |
| 102 | |
| 103 | /// \ingroup min_cut |
| 104 | /// |
| 105 | /// \brief Calculates the minimum cut in an undirected graph. |
| 106 | /// |
| 107 | /// Calculates the minimum cut in an undirected graph with the |
| 108 | /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's |
| 109 | /// nodes into two partitions with the minimum sum of edge capacities |
| 110 | /// between the two partitions. The algorithm can be used to test |
| 111 | /// the network reliability, especially to test how many links have |
| 112 | /// to be destroyed in the network to split it to at least two |
| 113 | /// distinict subnetworks. |
| 114 | /// |
| 115 | /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with |
| 116 | /// \ref FibHeap "Fibonacci heap" it can be decreased to |
| 117 | /// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities, |
| 118 | /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time |
| 119 | /// complexity. |
| 120 | /// |
| 121 | /// \warning The value type of the capacity map should be able to |
| 122 | /// hold any cut value of the graph, otherwise the result can |
| 123 | /// overflow. |
| 124 | /// \note This capacity is supposed to be integer type. |
| 125 | #ifdef DOXYGEN |
| 126 | template <typename GR, typename CM, typename TR> |
| 127 | #else |
| 128 | template <typename GR, |
| 129 | typename CM = typename GR::template EdgeMap<int>, |
| 130 | typename TR = NagamochiIbarakiDefaultTraits<GR, CM> > |
| 131 | #endif |
| 132 | class NagamochiIbaraki { |
| 133 | public: |
| 134 | |
| 135 | typedef TR Traits; |
| 136 | /// The type of the underlying graph. |
| 137 | typedef typename Traits::Graph Graph; |
| 138 | |
| 139 | /// The type of the capacity map. |
| 140 | typedef typename Traits::CapacityMap CapacityMap; |
| 141 | /// The value type of the capacity map. |
| 142 | typedef typename Traits::CapacityMap::Value Value; |
| 143 | |
| 144 | /// The heap type used by the algorithm. |
| 145 | typedef typename Traits::Heap Heap; |
| 146 | /// The cross reference type used for the heap. |
| 147 | typedef typename Traits::HeapCrossRef HeapCrossRef; |
| 148 | |
| 149 | ///\name Named template parameters |
| 150 | |
| 151 | ///@{ |
| 152 | |
| 153 | struct SetUnitCapacityTraits : public Traits { |
| 154 | typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap; |
| 155 | static CapacityMap *createCapacityMap(const Graph&) { |
| 156 | return new CapacityMap(); |
| 157 | } |
| 158 | }; |
| 159 | |
| 160 | /// \brief \ref named-templ-param "Named parameter" for setting |
| 161 | /// the capacity map to a constMap<Edge, int, 1>() instance |
| 162 | /// |
| 163 | /// \ref named-templ-param "Named parameter" for setting |
| 164 | /// the capacity map to a constMap<Edge, int, 1>() instance |
| 165 | struct SetUnitCapacity |
| 166 | : public NagamochiIbaraki<Graph, CapacityMap, |
| 167 | SetUnitCapacityTraits> { |
| 168 | typedef NagamochiIbaraki<Graph, CapacityMap, |
| 169 | SetUnitCapacityTraits> Create; |
| 170 | }; |
| 171 | |
| 172 | |
| 173 | template <class H, class CR> |
| 174 | struct SetHeapTraits : public Traits { |
| 175 | typedef CR HeapCrossRef; |
| 176 | typedef H Heap; |
| 177 | static HeapCrossRef *createHeapCrossRef(int num) { |
| 178 | LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 179 | return 0; // ignore warnings |
| 180 | } |
| 181 | static Heap *createHeap(HeapCrossRef &) { |
| 182 | LEMON_ASSERT(false, "Heap is not initialized"); |
| 183 | return 0; // ignore warnings |
| 184 | } |
| 185 | }; |
| 186 | |
| 187 | /// \brief \ref named-templ-param "Named parameter" for setting |
| 188 | /// heap and cross reference type |
| 189 | /// |
| 190 | /// \ref named-templ-param "Named parameter" for setting heap and |
| 191 | /// cross reference type. The heap has to maximize the priorities. |
| 192 | template <class H, class CR = RangeMap<int> > |
| 193 | struct SetHeap |
| 194 | : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > { |
| 195 | typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> > |
| 196 | Create; |
| 197 | }; |
| 198 | |
| 199 | template <class H, class CR> |
| 200 | struct SetStandardHeapTraits : public Traits { |
| 201 | typedef CR HeapCrossRef; |
| 202 | typedef H Heap; |
| 203 | static HeapCrossRef *createHeapCrossRef(int size) { |
| 204 | return new HeapCrossRef(size); |
| 205 | } |
| 206 | static Heap *createHeap(HeapCrossRef &crossref) { |
| 207 | return new Heap(crossref); |
| 208 | } |
| 209 | }; |
| 210 | |
| 211 | /// \brief \ref named-templ-param "Named parameter" for setting |
| 212 | /// heap and cross reference type with automatic allocation |
| 213 | /// |
| 214 | /// \ref named-templ-param "Named parameter" for setting heap and |
| 215 | /// cross reference type with automatic allocation. They should |
| 216 | /// have standard constructor interfaces to be able to |
| 217 | /// automatically created by the algorithm (i.e. the graph should |
| 218 | /// be passed to the constructor of the cross reference and the |
| 219 | /// cross reference should be passed to the constructor of the |
| 220 | /// heap). However, external heap and cross reference objects |
| 221 | /// could also be passed to the algorithm using the \ref heap() |
| 222 | /// function before calling \ref run() or \ref init(). The heap |
| 223 | /// has to maximize the priorities. |
| 224 | /// \sa SetHeap |
| 225 | template <class H, class CR = RangeMap<int> > |
| 226 | struct SetStandardHeap |
| 227 | : public NagamochiIbaraki<Graph, CapacityMap, |
| 228 | SetStandardHeapTraits<H, CR> > { |
| 229 | typedef NagamochiIbaraki<Graph, CapacityMap, |
| 230 | SetStandardHeapTraits<H, CR> > Create; |
| 231 | }; |
| 232 | |
| 233 | ///@} |
| 234 | |
| 235 | |
| 236 | private: |
| 237 | |
| 238 | const Graph &_graph; |
| 239 | const CapacityMap *_capacity; |
| 240 | bool _local_capacity; // unit capacity |
| 241 | |
| 242 | struct ArcData { |
| 243 | typename Graph::Node target; |
| 244 | int prev, next; |
| 245 | }; |
| 246 | struct EdgeData { |
| 247 | Value capacity; |
| 248 | Value cut; |
| 249 | }; |
| 250 | |
| 251 | struct NodeData { |
| 252 | int first_arc; |
| 253 | typename Graph::Node prev, next; |
| 254 | int curr_arc; |
| 255 | typename Graph::Node last_rep; |
| 256 | Value sum; |
| 257 | }; |
| 258 | |
| 259 | typename Graph::template NodeMap<NodeData> *_nodes; |
| 260 | std::vector<ArcData> _arcs; |
| 261 | std::vector<EdgeData> _edges; |
| 262 | |
| 263 | typename Graph::Node _first_node; |
| 264 | int _node_num; |
| 265 | |
| 266 | Value _min_cut; |
| 267 | |
| 268 | HeapCrossRef *_heap_cross_ref; |
| 269 | bool _local_heap_cross_ref; |
| 270 | Heap *_heap; |
| 271 | bool _local_heap; |
| 272 | |
| 273 | typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; |
| 274 | NodeList *_next_rep; |
| 275 | |
| 276 | typedef typename Graph::template NodeMap<bool> MinCutMap; |
| 277 | MinCutMap *_cut_map; |
| 278 | |
| 279 | void createStructures() { |
| 280 | if (!_nodes) { |
| 281 | _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); |
| 282 | } |
| 283 | if (!_capacity) { |
| 284 | _local_capacity = true; |
| 285 | _capacity = Traits::createCapacityMap(_graph); |
| 286 | } |
| 287 | if (!_heap_cross_ref) { |
| 288 | _local_heap_cross_ref = true; |
| 289 | _heap_cross_ref = Traits::createHeapCrossRef(_graph); |
| 290 | } |
| 291 | if (!_heap) { |
| 292 | _local_heap = true; |
| 293 | _heap = Traits::createHeap(*_heap_cross_ref); |
| 294 | } |
| 295 | if (!_next_rep) { |
| 296 | _next_rep = new NodeList(_graph); |
| 297 | } |
| 298 | if (!_cut_map) { |
| 299 | _cut_map = new MinCutMap(_graph); |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | public : |
| 304 | |
| 305 | typedef NagamochiIbaraki Create; |
| 306 | |
| 307 | |
| 308 | /// \brief Constructor. |
| 309 | /// |
| 310 | /// \param graph The graph the algorithm runs on. |
| 311 | /// \param capacity The capacity map used by the algorithm. |
| 312 | NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) |
| 313 | : _graph(graph), _capacity(&capacity), _local_capacity(false), |
| 314 | _nodes(0), _arcs(), _edges(), _min_cut(), |
| 315 | _heap_cross_ref(0), _local_heap_cross_ref(false), |
| 316 | _heap(0), _local_heap(false), |
| 317 | _next_rep(0), _cut_map(0) {} |
| 318 | |
| 319 | /// \brief Constructor. |
| 320 | /// |
| 321 | /// This constructor can be used only when the Traits class |
| 322 | /// defines how can the local capacity map be instantiated. |
| 323 | /// If the SetUnitCapacity used the algorithm automatically |
| 324 | /// constructs the capacity map. |
| 325 | /// |
| 326 | ///\param graph The graph the algorithm runs on. |
| 327 | NagamochiIbaraki(const Graph& graph) |
| 328 | : _graph(graph), _capacity(0), _local_capacity(false), |
| 329 | _nodes(0), _arcs(), _edges(), _min_cut(), |
| 330 | _heap_cross_ref(0), _local_heap_cross_ref(false), |
| 331 | _heap(0), _local_heap(false), |
| 332 | _next_rep(0), _cut_map(0) {} |
| 333 | |
| 334 | /// \brief Destructor. |
| 335 | /// |
| 336 | /// Destructor. |
| 337 | ~NagamochiIbaraki() { |
| 338 | if (_local_capacity) delete _capacity; |
| 339 | if (_nodes) delete _nodes; |
| 340 | if (_local_heap) delete _heap; |
| 341 | if (_local_heap_cross_ref) delete _heap_cross_ref; |
| 342 | if (_next_rep) delete _next_rep; |
| 343 | if (_cut_map) delete _cut_map; |
| 344 | } |
| 345 | |
| 346 | /// \brief Sets the heap and the cross reference used by algorithm. |
| 347 | /// |
| 348 | /// Sets the heap and the cross reference used by algorithm. |
| 349 | /// If you don't use this function before calling \ref run(), |
| 350 | /// it will allocate one. The destuctor deallocates this |
| 351 | /// automatically allocated heap and cross reference, of course. |
| 352 | /// \return <tt> (*this) </tt> |
| 353 | NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) |
| 354 | { |
| 355 | if (_local_heap_cross_ref) { |
| 356 | delete _heap_cross_ref; |
| 357 | _local_heap_cross_ref = false; |
| 358 | } |
| 359 | _heap_cross_ref = &cr; |
| 360 | if (_local_heap) { |
| 361 | delete _heap; |
| 362 | _local_heap = false; |
| 363 | } |
| 364 | _heap = &hp; |
| 365 | return *this; |
| 366 | } |
| 367 | |
| 368 | /// \name Execution control |
| 369 | /// The simplest way to execute the algorithm is to use |
| 370 | /// one of the member functions called \c run(). |
| 371 | /// \n |
| 372 | /// If you need more control on the execution, |
| 373 | /// first you must call \ref init() and then call the start() |
| 374 | /// or proper times the processNextPhase() member functions. |
| 375 | |
| 376 | ///@{ |
| 377 | |
| 378 | /// \brief Initializes the internal data structures. |
| 379 | /// |
| 380 | /// Initializes the internal data structures. |
| 381 | void init() { |
| 382 | createStructures(); |
| 383 | |
| 384 | int edge_num = countEdges(_graph); |
| 385 | _edges.resize(edge_num); |
| 386 | _arcs.resize(2 * edge_num); |
| 387 | |
| 388 | typename Graph::Node prev = INVALID; |
| 389 | _node_num = 0; |
| 390 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| 391 | (*_cut_map)[n] = false; |
| 392 | (*_next_rep)[n] = INVALID; |
| 393 | (*_nodes)[n].last_rep = n; |
| 394 | (*_nodes)[n].first_arc = -1; |
| 395 | (*_nodes)[n].curr_arc = -1; |
| 396 | (*_nodes)[n].prev = prev; |
| 397 | if (prev != INVALID) { |
| 398 | (*_nodes)[prev].next = n; |
| 399 | } |
| 400 | (*_nodes)[n].next = INVALID; |
| 401 | (*_nodes)[n].sum = 0; |
| 402 | prev = n; |
| 403 | ++_node_num; |
| 404 | } |
| 405 | |
| 406 | _first_node = typename Graph::NodeIt(_graph); |
| 407 | |
| 408 | int index = 0; |
| 409 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| 410 | for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) { |
| 411 | typename Graph::Node m = _graph.target(a); |
| 412 | |
| 413 | if (!(n < m)) continue; |
| 414 | |
| 415 | (*_nodes)[n].sum += (*_capacity)[a]; |
| 416 | (*_nodes)[m].sum += (*_capacity)[a]; |
| 417 | |
| 418 | int c = (*_nodes)[m].curr_arc; |
| 419 | if (c != -1 && _arcs[c ^ 1].target == n) { |
| 420 | _edges[c >> 1].capacity += (*_capacity)[a]; |
| 421 | } else { |
| 422 | _edges[index].capacity = (*_capacity)[a]; |
| 423 | |
| 424 | _arcs[index << 1].prev = -1; |
| 425 | if ((*_nodes)[n].first_arc != -1) { |
| 426 | _arcs[(*_nodes)[n].first_arc].prev = (index << 1); |
| 427 | } |
| 428 | _arcs[index << 1].next = (*_nodes)[n].first_arc; |
| 429 | (*_nodes)[n].first_arc = (index << 1); |
| 430 | _arcs[index << 1].target = m; |
| 431 | |
| 432 | (*_nodes)[m].curr_arc = (index << 1); |
| 433 | |
| 434 | _arcs[(index << 1) | 1].prev = -1; |
| 435 | if ((*_nodes)[m].first_arc != -1) { |
| 436 | _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1); |
| 437 | } |
| 438 | _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc; |
| 439 | (*_nodes)[m].first_arc = ((index << 1) | 1); |
| 440 | _arcs[(index << 1) | 1].target = n; |
| 441 | |
| 442 | ++index; |
| 443 | } |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | typename Graph::Node cut_node = INVALID; |
| 448 | _min_cut = std::numeric_limits<Value>::max(); |
| 449 | |
| 450 | for (typename Graph::Node n = _first_node; |
| 451 | n != INVALID; n = (*_nodes)[n].next) { |
| 452 | if ((*_nodes)[n].sum < _min_cut) { |
| 453 | cut_node = n; |
| 454 | _min_cut = (*_nodes)[n].sum; |
| 455 | } |
| 456 | } |
| 457 | (*_cut_map)[cut_node] = true; |
| 458 | if (_min_cut == 0) { |
| 459 | _first_node = INVALID; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | public: |
| 464 | |
| 465 | /// \brief Processes the next phase |
| 466 | /// |
| 467 | /// Processes the next phase in the algorithm. It must be called |
| 468 | /// at most one less the number of the nodes in the graph. |
| 469 | /// |
| 470 | ///\return %True when the algorithm finished. |
| 471 | bool processNextPhase() { |
| 472 | if (_first_node == INVALID) return true; |
| 473 | |
| 474 | _heap->clear(); |
| 475 | for (typename Graph::Node n = _first_node; |
| 476 | n != INVALID; n = (*_nodes)[n].next) { |
| 477 | (*_heap_cross_ref)[n] = Heap::PRE_HEAP; |
| 478 | } |
| 479 | |
| 480 | std::vector<typename Graph::Node> order; |
| 481 | order.reserve(_node_num); |
| 482 | int sep = 0; |
| 483 | |
| 484 | Value alpha = 0; |
| 485 | Value pmc = std::numeric_limits<Value>::max(); |
| 486 | |
| 487 | _heap->push(_first_node, static_cast<Value>(0)); |
| 488 | while (!_heap->empty()) { |
| 489 | typename Graph::Node n = _heap->top(); |
| 490 | Value v = _heap->prio(); |
| 491 | |
| 492 | _heap->pop(); |
| 493 | for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { |
| 494 | switch (_heap->state(_arcs[a].target)) { |
| 495 | case Heap::PRE_HEAP: |
| 496 | { |
| 497 | Value nv = _edges[a >> 1].capacity; |
| 498 | _heap->push(_arcs[a].target, nv); |
| 499 | _edges[a >> 1].cut = nv; |
| 500 | } break; |
| 501 | case Heap::IN_HEAP: |
| 502 | { |
| 503 | Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target]; |
| 504 | _heap->decrease(_arcs[a].target, nv); |
| 505 | _edges[a >> 1].cut = nv; |
| 506 | } break; |
| 507 | case Heap::POST_HEAP: |
| 508 | break; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | alpha += (*_nodes)[n].sum; |
| 513 | alpha -= 2 * v; |
| 514 | |
| 515 | order.push_back(n); |
| 516 | if (!_heap->empty()) { |
| 517 | if (alpha < pmc) { |
| 518 | pmc = alpha; |
| 519 | sep = order.size(); |
| 520 | } |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | if (static_cast<int>(order.size()) < _node_num) { |
| 525 | _first_node = INVALID; |
| 526 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| 527 | (*_cut_map)[n] = false; |
| 528 | } |
| 529 | for (int i = 0; i < static_cast<int>(order.size()); ++i) { |
| 530 | typename Graph::Node n = order[i]; |
| 531 | while (n != INVALID) { |
| 532 | (*_cut_map)[n] = true; |
| 533 | n = (*_next_rep)[n]; |
| 534 | } |
| 535 | } |
| 536 | _min_cut = 0; |
| 537 | return true; |
| 538 | } |
| 539 | |
| 540 | if (pmc < _min_cut) { |
| 541 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| 542 | (*_cut_map)[n] = false; |
| 543 | } |
| 544 | for (int i = 0; i < sep; ++i) { |
| 545 | typename Graph::Node n = order[i]; |
| 546 | while (n != INVALID) { |
| 547 | (*_cut_map)[n] = true; |
| 548 | n = (*_next_rep)[n]; |
| 549 | } |
| 550 | } |
| 551 | _min_cut = pmc; |
| 552 | } |
| 553 | |
| 554 | for (typename Graph::Node n = _first_node; |
| 555 | n != INVALID; n = (*_nodes)[n].next) { |
| 556 | bool merged = false; |
| 557 | for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { |
| 558 | if (!(_edges[a >> 1].cut < pmc)) { |
| 559 | if (!merged) { |
| 560 | for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) { |
| 561 | (*_nodes)[_arcs[b].target].curr_arc = b; |
| 562 | } |
| 563 | merged = true; |
| 564 | } |
| 565 | typename Graph::Node m = _arcs[a].target; |
| 566 | int nb = 0; |
| 567 | for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) { |
| 568 | nb = _arcs[b].next; |
| 569 | if ((b ^ a) == 1) continue; |
| 570 | typename Graph::Node o = _arcs[b].target; |
| 571 | int c = (*_nodes)[o].curr_arc; |
| 572 | if (c != -1 && _arcs[c ^ 1].target == n) { |
| 573 | _edges[c >> 1].capacity += _edges[b >> 1].capacity; |
| 574 | (*_nodes)[n].sum += _edges[b >> 1].capacity; |
| 575 | if (_edges[b >> 1].cut < _edges[c >> 1].cut) { |
| 576 | _edges[b >> 1].cut = _edges[c >> 1].cut; |
| 577 | } |
| 578 | if (_arcs[b ^ 1].prev != -1) { |
| 579 | _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next; |
| 580 | } else { |
| 581 | (*_nodes)[o].first_arc = _arcs[b ^ 1].next; |
| 582 | } |
| 583 | if (_arcs[b ^ 1].next != -1) { |
| 584 | _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev; |
| 585 | } |
| 586 | } else { |
| 587 | if (_arcs[a].next != -1) { |
| 588 | _arcs[_arcs[a].next].prev = b; |
| 589 | } |
| 590 | _arcs[b].next = _arcs[a].next; |
| 591 | _arcs[b].prev = a; |
| 592 | _arcs[a].next = b; |
| 593 | _arcs[b ^ 1].target = n; |
| 594 | |
| 595 | (*_nodes)[n].sum += _edges[b >> 1].capacity; |
| 596 | (*_nodes)[o].curr_arc = b; |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | if (_arcs[a].prev != -1) { |
| 601 | _arcs[_arcs[a].prev].next = _arcs[a].next; |
| 602 | } else { |
| 603 | (*_nodes)[n].first_arc = _arcs[a].next; |
| 604 | } |
| 605 | if (_arcs[a].next != -1) { |
| 606 | _arcs[_arcs[a].next].prev = _arcs[a].prev; |
| 607 | } |
| 608 | |
| 609 | (*_nodes)[n].sum -= _edges[a >> 1].capacity; |
| 610 | (*_next_rep)[(*_nodes)[n].last_rep] = m; |
| 611 | (*_nodes)[n].last_rep = (*_nodes)[m].last_rep; |
| 612 | |
| 613 | if ((*_nodes)[m].prev != INVALID) { |
| 614 | (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next; |
| 615 | } else{ |
| 616 | _first_node = (*_nodes)[m].next; |
| 617 | } |
| 618 | if ((*_nodes)[m].next != INVALID) { |
| 619 | (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev; |
| 620 | } |
| 621 | --_node_num; |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | if (_node_num == 1) { |
| 627 | _first_node = INVALID; |
| 628 | return true; |
| 629 | } |
| 630 | |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | /// \brief Executes the algorithm. |
| 635 | /// |
| 636 | /// Executes the algorithm. |
| 637 | /// |
| 638 | /// \pre init() must be called |
| 639 | void start() { |
| 640 | while (!processNextPhase()) {} |
| 641 | } |
| 642 | |
| 643 | |
| 644 | /// \brief Runs %NagamochiIbaraki algorithm. |
| 645 | /// |
| 646 | /// This method runs the %Min cut algorithm |
| 647 | /// |
| 648 | /// \note mc.run(s) is just a shortcut of the following code. |
| 649 | ///\code |
| 650 | /// mc.init(); |
| 651 | /// mc.start(); |
| 652 | ///\endcode |
| 653 | void run() { |
| 654 | init(); |
| 655 | start(); |
| 656 | } |
| 657 | |
| 658 | ///@} |
| 659 | |
| 660 | /// \name Query Functions |
| 661 | /// |
| 662 | /// The result of the %NagamochiIbaraki |
| 663 | /// algorithm can be obtained using these functions.\n |
| 664 | /// Before the use of these functions, either run() or start() |
| 665 | /// must be called. |
| 666 | |
| 667 | ///@{ |
| 668 | |
| 669 | /// \brief Returns the min cut value. |
| 670 | /// |
| 671 | /// Returns the min cut value if the algorithm finished. |
| 672 | /// After the first processNextPhase() it is a value of a |
| 673 | /// valid cut in the graph. |
| 674 | Value minCutValue() const { |
| 675 | return _min_cut; |
| 676 | } |
| 677 | |
| 678 | /// \brief Returns a min cut in a NodeMap. |
| 679 | /// |
| 680 | /// It sets the nodes of one of the two partitions to true and |
| 681 | /// the other partition to false. |
| 682 | /// \param cutMap A \ref concepts::WriteMap "writable" node map with |
| 683 | /// \c bool (or convertible) value type. |
| 684 | template <typename CutMap> |
| 685 | Value minCutMap(CutMap& cutMap) const { |
| 686 | for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
| 687 | cutMap.set(n, (*_cut_map)[n]); |
| 688 | } |
| 689 | return minCutValue(); |
| 690 | } |
| 691 | |
| 692 | ///@} |
| 693 | |
| 694 | }; |
| 695 | } |
| 696 | |
| 697 | #endif |