| | 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| | 2 | * |
| | 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| | 4 | * |
| | 5 | * Copyright (C) 2003-2008 |
| | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| | 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| | 8 | * |
| | 9 | * Permission to use, modify and distribute this software is granted |
| | 10 | * provided that this copyright notice appears in all copies. For |
| | 11 | * precise terms see the accompanying LICENSE file. |
| | 12 | * |
| | 13 | * This software is provided "AS IS" with no warranty of any kind, |
| | 14 | * express or implied, and with no claim as to its suitability for any |
| | 15 | * purpose. |
| | 16 | * |
| | 17 | */ |
| | 18 | |
| | 19 | #ifndef LEMON_TOPOLOGY_H |
| | 20 | #define LEMON_TOPOLOGY_H |
| | 21 | |
| | 22 | #include <lemon/dfs.h> |
| | 23 | #include <lemon/bfs.h> |
| | 24 | #include <lemon/core.h> |
| | 25 | #include <lemon/maps.h> |
| | 26 | #include <lemon/adaptors.h> |
| | 27 | |
| | 28 | #include <lemon/concepts/digraph.h> |
| | 29 | #include <lemon/concepts/graph.h> |
| | 30 | #include <lemon/concept_check.h> |
| | 31 | |
| | 32 | #include <stack> |
| | 33 | #include <functional> |
| | 34 | |
| | 35 | /// \ingroup connectivity |
| | 36 | /// \file |
| | 37 | /// \brief Connectivity algorithms |
| | 38 | /// |
| | 39 | /// Connectivity algorithms |
| | 40 | |
| | 41 | namespace lemon { |
| | 42 | |
| | 43 | /// \ingroup connectivity |
| | 44 | /// |
| | 45 | /// \brief Check whether the given undirected graph is connected. |
| | 46 | /// |
| | 47 | /// Check whether the given undirected graph is connected. |
| | 48 | /// \param graph The undirected graph. |
| | 49 | /// \return %True when there is path between any two nodes in the graph. |
| | 50 | /// \note By definition, the empty graph is connected. |
| | 51 | template <typename Graph> |
| | 52 | bool connected(const Graph& graph) { |
| | 53 | checkConcept<concepts::Graph, Graph>(); |
| | 54 | typedef typename Graph::NodeIt NodeIt; |
| | 55 | if (NodeIt(graph) == INVALID) return true; |
| | 56 | Dfs<Graph> dfs(graph); |
| | 57 | dfs.run(NodeIt(graph)); |
| | 58 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 59 | if (!dfs.reached(it)) { |
| | 60 | return false; |
| | 61 | } |
| | 62 | } |
| | 63 | return true; |
| | 64 | } |
| | 65 | |
| | 66 | /// \ingroup connectivity |
| | 67 | /// |
| | 68 | /// \brief Count the number of connected components of an undirected graph |
| | 69 | /// |
| | 70 | /// Count the number of connected components of an undirected graph |
| | 71 | /// |
| | 72 | /// \param graph The graph. It must be undirected. |
| | 73 | /// \return The number of components |
| | 74 | /// \note By definition, the empty graph consists |
| | 75 | /// of zero connected components. |
| | 76 | template <typename Graph> |
| | 77 | int countConnectedComponents(const Graph &graph) { |
| | 78 | checkConcept<concepts::Graph, Graph>(); |
| | 79 | typedef typename Graph::Node Node; |
| | 80 | typedef typename Graph::Arc Arc; |
| | 81 | |
| | 82 | typedef NullMap<Node, Arc> PredMap; |
| | 83 | typedef NullMap<Node, int> DistMap; |
| | 84 | |
| | 85 | int compNum = 0; |
| | 86 | typename Bfs<Graph>:: |
| | 87 | template SetPredMap<PredMap>:: |
| | 88 | template SetDistMap<DistMap>:: |
| | 89 | Create bfs(graph); |
| | 90 | |
| | 91 | PredMap predMap; |
| | 92 | bfs.predMap(predMap); |
| | 93 | |
| | 94 | DistMap distMap; |
| | 95 | bfs.distMap(distMap); |
| | 96 | |
| | 97 | bfs.init(); |
| | 98 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
| | 99 | if (!bfs.reached(n)) { |
| | 100 | bfs.addSource(n); |
| | 101 | bfs.start(); |
| | 102 | ++compNum; |
| | 103 | } |
| | 104 | } |
| | 105 | return compNum; |
| | 106 | } |
| | 107 | |
| | 108 | /// \ingroup connectivity |
| | 109 | /// |
| | 110 | /// \brief Find the connected components of an undirected graph |
| | 111 | /// |
| | 112 | /// Find the connected components of an undirected graph. |
| | 113 | /// |
| | 114 | /// \param graph The graph. It must be undirected. |
| | 115 | /// \retval compMap A writable node map. The values will be set from 0 to |
| | 116 | /// the number of the connected components minus one. Each values of the map |
| | 117 | /// will be set exactly once, the values of a certain component will be |
| | 118 | /// set continuously. |
| | 119 | /// \return The number of components |
| | 120 | /// |
| | 121 | template <class Graph, class NodeMap> |
| | 122 | int connectedComponents(const Graph &graph, NodeMap &compMap) { |
| | 123 | checkConcept<concepts::Graph, Graph>(); |
| | 124 | typedef typename Graph::Node Node; |
| | 125 | typedef typename Graph::Arc Arc; |
| | 126 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| | 127 | |
| | 128 | typedef NullMap<Node, Arc> PredMap; |
| | 129 | typedef NullMap<Node, int> DistMap; |
| | 130 | |
| | 131 | int compNum = 0; |
| | 132 | typename Bfs<Graph>:: |
| | 133 | template SetPredMap<PredMap>:: |
| | 134 | template SetDistMap<DistMap>:: |
| | 135 | Create bfs(graph); |
| | 136 | |
| | 137 | PredMap predMap; |
| | 138 | bfs.predMap(predMap); |
| | 139 | |
| | 140 | DistMap distMap; |
| | 141 | bfs.distMap(distMap); |
| | 142 | |
| | 143 | bfs.init(); |
| | 144 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
| | 145 | if(!bfs.reached(n)) { |
| | 146 | bfs.addSource(n); |
| | 147 | while (!bfs.emptyQueue()) { |
| | 148 | compMap.set(bfs.nextNode(), compNum); |
| | 149 | bfs.processNextNode(); |
| | 150 | } |
| | 151 | ++compNum; |
| | 152 | } |
| | 153 | } |
| | 154 | return compNum; |
| | 155 | } |
| | 156 | |
| | 157 | namespace _topology_bits { |
| | 158 | |
| | 159 | template <typename Digraph, typename Iterator > |
| | 160 | struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
| | 161 | public: |
| | 162 | typedef typename Digraph::Node Node; |
| | 163 | LeaveOrderVisitor(Iterator it) : _it(it) {} |
| | 164 | |
| | 165 | void leave(const Node& node) { |
| | 166 | *(_it++) = node; |
| | 167 | } |
| | 168 | |
| | 169 | private: |
| | 170 | Iterator _it; |
| | 171 | }; |
| | 172 | |
| | 173 | template <typename Digraph, typename Map> |
| | 174 | struct FillMapVisitor : public DfsVisitor<Digraph> { |
| | 175 | public: |
| | 176 | typedef typename Digraph::Node Node; |
| | 177 | typedef typename Map::Value Value; |
| | 178 | |
| | 179 | FillMapVisitor(Map& map, Value& value) |
| | 180 | : _map(map), _value(value) {} |
| | 181 | |
| | 182 | void reach(const Node& node) { |
| | 183 | _map.set(node, _value); |
| | 184 | } |
| | 185 | private: |
| | 186 | Map& _map; |
| | 187 | Value& _value; |
| | 188 | }; |
| | 189 | |
| | 190 | template <typename Digraph, typename ArcMap> |
| | 191 | struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
| | 192 | public: |
| | 193 | typedef typename Digraph::Node Node; |
| | 194 | typedef typename Digraph::Arc Arc; |
| | 195 | |
| | 196 | StronglyConnectedCutEdgesVisitor(const Digraph& digraph, |
| | 197 | ArcMap& cutMap, |
| | 198 | int& cutNum) |
| | 199 | : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
| | 200 | _compMap(digraph), _num(0) { |
| | 201 | } |
| | 202 | |
| | 203 | void stop(const Node&) { |
| | 204 | ++_num; |
| | 205 | } |
| | 206 | |
| | 207 | void reach(const Node& node) { |
| | 208 | _compMap.set(node, _num); |
| | 209 | } |
| | 210 | |
| | 211 | void examine(const Arc& arc) { |
| | 212 | if (_compMap[_digraph.source(arc)] != |
| | 213 | _compMap[_digraph.target(arc)]) { |
| | 214 | _cutMap.set(arc, true); |
| | 215 | ++_cutNum; |
| | 216 | } |
| | 217 | } |
| | 218 | private: |
| | 219 | const Digraph& _digraph; |
| | 220 | ArcMap& _cutMap; |
| | 221 | int& _cutNum; |
| | 222 | |
| | 223 | typename Digraph::template NodeMap<int> _compMap; |
| | 224 | int _num; |
| | 225 | }; |
| | 226 | |
| | 227 | } |
| | 228 | |
| | 229 | |
| | 230 | /// \ingroup connectivity |
| | 231 | /// |
| | 232 | /// \brief Check whether the given directed graph is strongly connected. |
| | 233 | /// |
| | 234 | /// Check whether the given directed graph is strongly connected. The |
| | 235 | /// graph is strongly connected when any two nodes of the graph are |
| | 236 | /// connected with directed paths in both direction. |
| | 237 | /// \return %False when the graph is not strongly connected. |
| | 238 | /// \see connected |
| | 239 | /// |
| | 240 | /// \note By definition, the empty graph is strongly connected. |
| | 241 | template <typename Digraph> |
| | 242 | bool stronglyConnected(const Digraph& digraph) { |
| | 243 | checkConcept<concepts::Digraph, Digraph>(); |
| | 244 | |
| | 245 | typedef typename Digraph::Node Node; |
| | 246 | typedef typename Digraph::NodeIt NodeIt; |
| | 247 | |
| | 248 | typename Digraph::Node source = NodeIt(digraph); |
| | 249 | if (source == INVALID) return true; |
| | 250 | |
| | 251 | using namespace _topology_bits; |
| | 252 | |
| | 253 | typedef DfsVisitor<Digraph> Visitor; |
| | 254 | Visitor visitor; |
| | 255 | |
| | 256 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| | 257 | dfs.init(); |
| | 258 | dfs.addSource(source); |
| | 259 | dfs.start(); |
| | 260 | |
| | 261 | for (NodeIt it(digraph); it != INVALID; ++it) { |
| | 262 | if (!dfs.reached(it)) { |
| | 263 | return false; |
| | 264 | } |
| | 265 | } |
| | 266 | |
| | 267 | typedef ReverseDigraph<const Digraph> RDigraph; |
| | 268 | RDigraph rdigraph(digraph); |
| | 269 | |
| | 270 | typedef DfsVisitor<Digraph> RVisitor; |
| | 271 | RVisitor rvisitor; |
| | 272 | |
| | 273 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| | 274 | rdfs.init(); |
| | 275 | rdfs.addSource(source); |
| | 276 | rdfs.start(); |
| | 277 | |
| | 278 | for (NodeIt it(rdigraph); it != INVALID; ++it) { |
| | 279 | if (!rdfs.reached(it)) { |
| | 280 | return false; |
| | 281 | } |
| | 282 | } |
| | 283 | |
| | 284 | return true; |
| | 285 | } |
| | 286 | |
| | 287 | /// \ingroup connectivity |
| | 288 | /// |
| | 289 | /// \brief Count the strongly connected components of a directed graph |
| | 290 | /// |
| | 291 | /// Count the strongly connected components of a directed graph. |
| | 292 | /// The strongly connected components are the classes of an |
| | 293 | /// equivalence relation on the nodes of the graph. Two nodes are in |
| | 294 | /// the same class if they are connected with directed paths in both |
| | 295 | /// direction. |
| | 296 | /// |
| | 297 | /// \param graph The graph. |
| | 298 | /// \return The number of components |
| | 299 | /// \note By definition, the empty graph has zero |
| | 300 | /// strongly connected components. |
| | 301 | template <typename Digraph> |
| | 302 | int countStronglyConnectedComponents(const Digraph& digraph) { |
| | 303 | checkConcept<concepts::Digraph, Digraph>(); |
| | 304 | |
| | 305 | using namespace _topology_bits; |
| | 306 | |
| | 307 | typedef typename Digraph::Node Node; |
| | 308 | typedef typename Digraph::Arc Arc; |
| | 309 | typedef typename Digraph::NodeIt NodeIt; |
| | 310 | typedef typename Digraph::ArcIt ArcIt; |
| | 311 | |
| | 312 | typedef std::vector<Node> Container; |
| | 313 | typedef typename Container::iterator Iterator; |
| | 314 | |
| | 315 | Container nodes(countNodes(digraph)); |
| | 316 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| | 317 | Visitor visitor(nodes.begin()); |
| | 318 | |
| | 319 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| | 320 | dfs.init(); |
| | 321 | for (NodeIt it(digraph); it != INVALID; ++it) { |
| | 322 | if (!dfs.reached(it)) { |
| | 323 | dfs.addSource(it); |
| | 324 | dfs.start(); |
| | 325 | } |
| | 326 | } |
| | 327 | |
| | 328 | typedef typename Container::reverse_iterator RIterator; |
| | 329 | typedef ReverseDigraph<const Digraph> RDigraph; |
| | 330 | |
| | 331 | RDigraph rdigraph(digraph); |
| | 332 | |
| | 333 | typedef DfsVisitor<Digraph> RVisitor; |
| | 334 | RVisitor rvisitor; |
| | 335 | |
| | 336 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| | 337 | |
| | 338 | int compNum = 0; |
| | 339 | |
| | 340 | rdfs.init(); |
| | 341 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
| | 342 | if (!rdfs.reached(*it)) { |
| | 343 | rdfs.addSource(*it); |
| | 344 | rdfs.start(); |
| | 345 | ++compNum; |
| | 346 | } |
| | 347 | } |
| | 348 | return compNum; |
| | 349 | } |
| | 350 | |
| | 351 | /// \ingroup connectivity |
| | 352 | /// |
| | 353 | /// \brief Find the strongly connected components of a directed graph |
| | 354 | /// |
| | 355 | /// Find the strongly connected components of a directed graph. The |
| | 356 | /// strongly connected components are the classes of an equivalence |
| | 357 | /// relation on the nodes of the graph. Two nodes are in |
| | 358 | /// relationship when there are directed paths between them in both |
| | 359 | /// direction. In addition, the numbering of components will satisfy |
| | 360 | /// that there is no arc going from a higher numbered component to |
| | 361 | /// a lower. |
| | 362 | /// |
| | 363 | /// \param digraph The digraph. |
| | 364 | /// \retval compMap A writable node map. The values will be set from 0 to |
| | 365 | /// the number of the strongly connected components minus one. Each value |
| | 366 | /// of the map will be set exactly once, the values of a certain component |
| | 367 | /// will be set continuously. |
| | 368 | /// \return The number of components |
| | 369 | /// |
| | 370 | template <typename Digraph, typename NodeMap> |
| | 371 | int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
| | 372 | checkConcept<concepts::Digraph, Digraph>(); |
| | 373 | typedef typename Digraph::Node Node; |
| | 374 | typedef typename Digraph::NodeIt NodeIt; |
| | 375 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| | 376 | |
| | 377 | using namespace _topology_bits; |
| | 378 | |
| | 379 | typedef std::vector<Node> Container; |
| | 380 | typedef typename Container::iterator Iterator; |
| | 381 | |
| | 382 | Container nodes(countNodes(digraph)); |
| | 383 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| | 384 | Visitor visitor(nodes.begin()); |
| | 385 | |
| | 386 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| | 387 | dfs.init(); |
| | 388 | for (NodeIt it(digraph); it != INVALID; ++it) { |
| | 389 | if (!dfs.reached(it)) { |
| | 390 | dfs.addSource(it); |
| | 391 | dfs.start(); |
| | 392 | } |
| | 393 | } |
| | 394 | |
| | 395 | typedef typename Container::reverse_iterator RIterator; |
| | 396 | typedef ReverseDigraph<const Digraph> RDigraph; |
| | 397 | |
| | 398 | RDigraph rdigraph(digraph); |
| | 399 | |
| | 400 | int compNum = 0; |
| | 401 | |
| | 402 | typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
| | 403 | RVisitor rvisitor(compMap, compNum); |
| | 404 | |
| | 405 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| | 406 | |
| | 407 | rdfs.init(); |
| | 408 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
| | 409 | if (!rdfs.reached(*it)) { |
| | 410 | rdfs.addSource(*it); |
| | 411 | rdfs.start(); |
| | 412 | ++compNum; |
| | 413 | } |
| | 414 | } |
| | 415 | return compNum; |
| | 416 | } |
| | 417 | |
| | 418 | /// \ingroup connectivity |
| | 419 | /// |
| | 420 | /// \brief Find the cut arcs of the strongly connected components. |
| | 421 | /// |
| | 422 | /// Find the cut arcs of the strongly connected components. |
| | 423 | /// The strongly connected components are the classes of an equivalence |
| | 424 | /// relation on the nodes of the graph. Two nodes are in relationship |
| | 425 | /// when there are directed paths between them in both direction. |
| | 426 | /// The strongly connected components are separated by the cut arcs. |
| | 427 | /// |
| | 428 | /// \param graph The graph. |
| | 429 | /// \retval cutMap A writable node map. The values will be set true when the |
| | 430 | /// arc is a cut arc. |
| | 431 | /// |
| | 432 | /// \return The number of cut arcs |
| | 433 | template <typename Digraph, typename ArcMap> |
| | 434 | int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) { |
| | 435 | checkConcept<concepts::Digraph, Digraph>(); |
| | 436 | typedef typename Digraph::Node Node; |
| | 437 | typedef typename Digraph::Arc Arc; |
| | 438 | typedef typename Digraph::NodeIt NodeIt; |
| | 439 | checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
| | 440 | |
| | 441 | using namespace _topology_bits; |
| | 442 | |
| | 443 | typedef std::vector<Node> Container; |
| | 444 | typedef typename Container::iterator Iterator; |
| | 445 | |
| | 446 | Container nodes(countNodes(graph)); |
| | 447 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| | 448 | Visitor visitor(nodes.begin()); |
| | 449 | |
| | 450 | DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
| | 451 | dfs.init(); |
| | 452 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 453 | if (!dfs.reached(it)) { |
| | 454 | dfs.addSource(it); |
| | 455 | dfs.start(); |
| | 456 | } |
| | 457 | } |
| | 458 | |
| | 459 | typedef typename Container::reverse_iterator RIterator; |
| | 460 | typedef ReverseDigraph<const Digraph> RDigraph; |
| | 461 | |
| | 462 | RDigraph rgraph(graph); |
| | 463 | |
| | 464 | int cutNum = 0; |
| | 465 | |
| | 466 | typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor; |
| | 467 | RVisitor rvisitor(rgraph, cutMap, cutNum); |
| | 468 | |
| | 469 | DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
| | 470 | |
| | 471 | rdfs.init(); |
| | 472 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
| | 473 | if (!rdfs.reached(*it)) { |
| | 474 | rdfs.addSource(*it); |
| | 475 | rdfs.start(); |
| | 476 | } |
| | 477 | } |
| | 478 | return cutNum; |
| | 479 | } |
| | 480 | |
| | 481 | namespace _topology_bits { |
| | 482 | |
| | 483 | template <typename Digraph> |
| | 484 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| | 485 | public: |
| | 486 | typedef typename Digraph::Node Node; |
| | 487 | typedef typename Digraph::Arc Arc; |
| | 488 | typedef typename Digraph::Edge Edge; |
| | 489 | |
| | 490 | CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| | 491 | : _graph(graph), _compNum(compNum), |
| | 492 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| | 493 | |
| | 494 | void start(const Node& node) { |
| | 495 | _predMap.set(node, INVALID); |
| | 496 | } |
| | 497 | |
| | 498 | void reach(const Node& node) { |
| | 499 | _numMap.set(node, _num); |
| | 500 | _retMap.set(node, _num); |
| | 501 | ++_num; |
| | 502 | } |
| | 503 | |
| | 504 | void discover(const Arc& edge) { |
| | 505 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
| | 506 | } |
| | 507 | |
| | 508 | void examine(const Arc& edge) { |
| | 509 | if (_graph.source(edge) == _graph.target(edge) && |
| | 510 | _graph.direction(edge)) { |
| | 511 | ++_compNum; |
| | 512 | return; |
| | 513 | } |
| | 514 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
| | 515 | return; |
| | 516 | } |
| | 517 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
| | 518 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| | 519 | } |
| | 520 | } |
| | 521 | |
| | 522 | void backtrack(const Arc& edge) { |
| | 523 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 524 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 525 | } |
| | 526 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
| | 527 | ++_compNum; |
| | 528 | } |
| | 529 | } |
| | 530 | |
| | 531 | private: |
| | 532 | const Digraph& _graph; |
| | 533 | int& _compNum; |
| | 534 | |
| | 535 | typename Digraph::template NodeMap<int> _numMap; |
| | 536 | typename Digraph::template NodeMap<int> _retMap; |
| | 537 | typename Digraph::template NodeMap<Node> _predMap; |
| | 538 | int _num; |
| | 539 | }; |
| | 540 | |
| | 541 | template <typename Digraph, typename ArcMap> |
| | 542 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| | 543 | public: |
| | 544 | typedef typename Digraph::Node Node; |
| | 545 | typedef typename Digraph::Arc Arc; |
| | 546 | typedef typename Digraph::Edge Edge; |
| | 547 | |
| | 548 | BiNodeConnectedComponentsVisitor(const Digraph& graph, |
| | 549 | ArcMap& compMap, int &compNum) |
| | 550 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
| | 551 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| | 552 | |
| | 553 | void start(const Node& node) { |
| | 554 | _predMap.set(node, INVALID); |
| | 555 | } |
| | 556 | |
| | 557 | void reach(const Node& node) { |
| | 558 | _numMap.set(node, _num); |
| | 559 | _retMap.set(node, _num); |
| | 560 | ++_num; |
| | 561 | } |
| | 562 | |
| | 563 | void discover(const Arc& edge) { |
| | 564 | Node target = _graph.target(edge); |
| | 565 | _predMap.set(target, edge); |
| | 566 | _edgeStack.push(edge); |
| | 567 | } |
| | 568 | |
| | 569 | void examine(const Arc& edge) { |
| | 570 | Node source = _graph.source(edge); |
| | 571 | Node target = _graph.target(edge); |
| | 572 | if (source == target && _graph.direction(edge)) { |
| | 573 | _compMap.set(edge, _compNum); |
| | 574 | ++_compNum; |
| | 575 | return; |
| | 576 | } |
| | 577 | if (_numMap[target] < _numMap[source]) { |
| | 578 | if (_predMap[source] != _graph.oppositeArc(edge)) { |
| | 579 | _edgeStack.push(edge); |
| | 580 | } |
| | 581 | } |
| | 582 | if (_predMap[source] != INVALID && |
| | 583 | target == _graph.source(_predMap[source])) { |
| | 584 | return; |
| | 585 | } |
| | 586 | if (_retMap[source] > _numMap[target]) { |
| | 587 | _retMap.set(source, _numMap[target]); |
| | 588 | } |
| | 589 | } |
| | 590 | |
| | 591 | void backtrack(const Arc& edge) { |
| | 592 | Node source = _graph.source(edge); |
| | 593 | Node target = _graph.target(edge); |
| | 594 | if (_retMap[source] > _retMap[target]) { |
| | 595 | _retMap.set(source, _retMap[target]); |
| | 596 | } |
| | 597 | if (_numMap[source] <= _retMap[target]) { |
| | 598 | while (_edgeStack.top() != edge) { |
| | 599 | _compMap.set(_edgeStack.top(), _compNum); |
| | 600 | _edgeStack.pop(); |
| | 601 | } |
| | 602 | _compMap.set(edge, _compNum); |
| | 603 | _edgeStack.pop(); |
| | 604 | ++_compNum; |
| | 605 | } |
| | 606 | } |
| | 607 | |
| | 608 | private: |
| | 609 | const Digraph& _graph; |
| | 610 | ArcMap& _compMap; |
| | 611 | int& _compNum; |
| | 612 | |
| | 613 | typename Digraph::template NodeMap<int> _numMap; |
| | 614 | typename Digraph::template NodeMap<int> _retMap; |
| | 615 | typename Digraph::template NodeMap<Arc> _predMap; |
| | 616 | std::stack<Edge> _edgeStack; |
| | 617 | int _num; |
| | 618 | }; |
| | 619 | |
| | 620 | |
| | 621 | template <typename Digraph, typename NodeMap> |
| | 622 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> { |
| | 623 | public: |
| | 624 | typedef typename Digraph::Node Node; |
| | 625 | typedef typename Digraph::Arc Arc; |
| | 626 | typedef typename Digraph::Edge Edge; |
| | 627 | |
| | 628 | BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
| | 629 | int& cutNum) |
| | 630 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| | 631 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| | 632 | |
| | 633 | void start(const Node& node) { |
| | 634 | _predMap.set(node, INVALID); |
| | 635 | rootCut = false; |
| | 636 | } |
| | 637 | |
| | 638 | void reach(const Node& node) { |
| | 639 | _numMap.set(node, _num); |
| | 640 | _retMap.set(node, _num); |
| | 641 | ++_num; |
| | 642 | } |
| | 643 | |
| | 644 | void discover(const Arc& edge) { |
| | 645 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
| | 646 | } |
| | 647 | |
| | 648 | void examine(const Arc& edge) { |
| | 649 | if (_graph.source(edge) == _graph.target(edge) && |
| | 650 | _graph.direction(edge)) { |
| | 651 | if (!_cutMap[_graph.source(edge)]) { |
| | 652 | _cutMap.set(_graph.source(edge), true); |
| | 653 | ++_cutNum; |
| | 654 | } |
| | 655 | return; |
| | 656 | } |
| | 657 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
| | 658 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
| | 659 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| | 660 | } |
| | 661 | } |
| | 662 | |
| | 663 | void backtrack(const Arc& edge) { |
| | 664 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 665 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 666 | } |
| | 667 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
| | 668 | if (_predMap[_graph.source(edge)] != INVALID) { |
| | 669 | if (!_cutMap[_graph.source(edge)]) { |
| | 670 | _cutMap.set(_graph.source(edge), true); |
| | 671 | ++_cutNum; |
| | 672 | } |
| | 673 | } else if (rootCut) { |
| | 674 | if (!_cutMap[_graph.source(edge)]) { |
| | 675 | _cutMap.set(_graph.source(edge), true); |
| | 676 | ++_cutNum; |
| | 677 | } |
| | 678 | } else { |
| | 679 | rootCut = true; |
| | 680 | } |
| | 681 | } |
| | 682 | } |
| | 683 | |
| | 684 | private: |
| | 685 | const Digraph& _graph; |
| | 686 | NodeMap& _cutMap; |
| | 687 | int& _cutNum; |
| | 688 | |
| | 689 | typename Digraph::template NodeMap<int> _numMap; |
| | 690 | typename Digraph::template NodeMap<int> _retMap; |
| | 691 | typename Digraph::template NodeMap<Node> _predMap; |
| | 692 | std::stack<Edge> _edgeStack; |
| | 693 | int _num; |
| | 694 | bool rootCut; |
| | 695 | }; |
| | 696 | |
| | 697 | } |
| | 698 | |
| | 699 | template <typename Graph> |
| | 700 | int countBiNodeConnectedComponents(const Graph& graph); |
| | 701 | |
| | 702 | /// \ingroup connectivity |
| | 703 | /// |
| | 704 | /// \brief Checks the graph is bi-node-connected. |
| | 705 | /// |
| | 706 | /// This function checks that the undirected graph is bi-node-connected |
| | 707 | /// graph. The graph is bi-node-connected if any two undirected edge is |
| | 708 | /// on same circle. |
| | 709 | /// |
| | 710 | /// \param graph The graph. |
| | 711 | /// \return %True when the graph bi-node-connected. |
| | 712 | template <typename Graph> |
| | 713 | bool biNodeConnected(const Graph& graph) { |
| | 714 | return countBiNodeConnectedComponents(graph) <= 1; |
| | 715 | } |
| | 716 | |
| | 717 | /// \ingroup connectivity |
| | 718 | /// |
| | 719 | /// \brief Count the biconnected components. |
| | 720 | /// |
| | 721 | /// This function finds the bi-node-connected components in an undirected |
| | 722 | /// graph. The biconnected components are the classes of an equivalence |
| | 723 | /// relation on the undirected edges. Two undirected edge is in relationship |
| | 724 | /// when they are on same circle. |
| | 725 | /// |
| | 726 | /// \param graph The graph. |
| | 727 | /// \return The number of components. |
| | 728 | template <typename Graph> |
| | 729 | int countBiNodeConnectedComponents(const Graph& graph) { |
| | 730 | checkConcept<concepts::Graph, Graph>(); |
| | 731 | typedef typename Graph::NodeIt NodeIt; |
| | 732 | |
| | 733 | using namespace _topology_bits; |
| | 734 | |
| | 735 | typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
| | 736 | |
| | 737 | int compNum = 0; |
| | 738 | Visitor visitor(graph, compNum); |
| | 739 | |
| | 740 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| | 741 | dfs.init(); |
| | 742 | |
| | 743 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 744 | if (!dfs.reached(it)) { |
| | 745 | dfs.addSource(it); |
| | 746 | dfs.start(); |
| | 747 | } |
| | 748 | } |
| | 749 | return compNum; |
| | 750 | } |
| | 751 | |
| | 752 | /// \ingroup connectivity |
| | 753 | /// |
| | 754 | /// \brief Find the bi-node-connected components. |
| | 755 | /// |
| | 756 | /// This function finds the bi-node-connected components in an undirected |
| | 757 | /// graph. The bi-node-connected components are the classes of an equivalence |
| | 758 | /// relation on the undirected edges. Two undirected edge are in relationship |
| | 759 | /// when they are on same circle. |
| | 760 | /// |
| | 761 | /// \param graph The graph. |
| | 762 | /// \retval compMap A writable uedge map. The values will be set from 0 |
| | 763 | /// to the number of the biconnected components minus one. Each values |
| | 764 | /// of the map will be set exactly once, the values of a certain component |
| | 765 | /// will be set continuously. |
| | 766 | /// \return The number of components. |
| | 767 | /// |
| | 768 | template <typename Graph, typename EdgeMap> |
| | 769 | int biNodeConnectedComponents(const Graph& graph, |
| | 770 | EdgeMap& compMap) { |
| | 771 | checkConcept<concepts::Graph, Graph>(); |
| | 772 | typedef typename Graph::NodeIt NodeIt; |
| | 773 | typedef typename Graph::Edge Edge; |
| | 774 | checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
| | 775 | |
| | 776 | using namespace _topology_bits; |
| | 777 | |
| | 778 | typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
| | 779 | |
| | 780 | int compNum = 0; |
| | 781 | Visitor visitor(graph, compMap, compNum); |
| | 782 | |
| | 783 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| | 784 | dfs.init(); |
| | 785 | |
| | 786 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 787 | if (!dfs.reached(it)) { |
| | 788 | dfs.addSource(it); |
| | 789 | dfs.start(); |
| | 790 | } |
| | 791 | } |
| | 792 | return compNum; |
| | 793 | } |
| | 794 | |
| | 795 | /// \ingroup connectivity |
| | 796 | /// |
| | 797 | /// \brief Find the bi-node-connected cut nodes. |
| | 798 | /// |
| | 799 | /// This function finds the bi-node-connected cut nodes in an undirected |
| | 800 | /// graph. The bi-node-connected components are the classes of an equivalence |
| | 801 | /// relation on the undirected edges. Two undirected edges are in |
| | 802 | /// relationship when they are on same circle. The biconnected components |
| | 803 | /// are separted by nodes which are the cut nodes of the components. |
| | 804 | /// |
| | 805 | /// \param graph The graph. |
| | 806 | /// \retval cutMap A writable edge map. The values will be set true when |
| | 807 | /// the node separate two or more components. |
| | 808 | /// \return The number of the cut nodes. |
| | 809 | template <typename Graph, typename NodeMap> |
| | 810 | int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
| | 811 | checkConcept<concepts::Graph, Graph>(); |
| | 812 | typedef typename Graph::Node Node; |
| | 813 | typedef typename Graph::NodeIt NodeIt; |
| | 814 | checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
| | 815 | |
| | 816 | using namespace _topology_bits; |
| | 817 | |
| | 818 | typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
| | 819 | |
| | 820 | int cutNum = 0; |
| | 821 | Visitor visitor(graph, cutMap, cutNum); |
| | 822 | |
| | 823 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| | 824 | dfs.init(); |
| | 825 | |
| | 826 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 827 | if (!dfs.reached(it)) { |
| | 828 | dfs.addSource(it); |
| | 829 | dfs.start(); |
| | 830 | } |
| | 831 | } |
| | 832 | return cutNum; |
| | 833 | } |
| | 834 | |
| | 835 | namespace _topology_bits { |
| | 836 | |
| | 837 | template <typename Digraph> |
| | 838 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| | 839 | public: |
| | 840 | typedef typename Digraph::Node Node; |
| | 841 | typedef typename Digraph::Arc Arc; |
| | 842 | typedef typename Digraph::Edge Edge; |
| | 843 | |
| | 844 | CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| | 845 | : _graph(graph), _compNum(compNum), |
| | 846 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| | 847 | |
| | 848 | void start(const Node& node) { |
| | 849 | _predMap.set(node, INVALID); |
| | 850 | } |
| | 851 | |
| | 852 | void reach(const Node& node) { |
| | 853 | _numMap.set(node, _num); |
| | 854 | _retMap.set(node, _num); |
| | 855 | ++_num; |
| | 856 | } |
| | 857 | |
| | 858 | void leave(const Node& node) { |
| | 859 | if (_numMap[node] <= _retMap[node]) { |
| | 860 | ++_compNum; |
| | 861 | } |
| | 862 | } |
| | 863 | |
| | 864 | void discover(const Arc& edge) { |
| | 865 | _predMap.set(_graph.target(edge), edge); |
| | 866 | } |
| | 867 | |
| | 868 | void examine(const Arc& edge) { |
| | 869 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
| | 870 | return; |
| | 871 | } |
| | 872 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 873 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 874 | } |
| | 875 | } |
| | 876 | |
| | 877 | void backtrack(const Arc& edge) { |
| | 878 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 879 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 880 | } |
| | 881 | } |
| | 882 | |
| | 883 | private: |
| | 884 | const Digraph& _graph; |
| | 885 | int& _compNum; |
| | 886 | |
| | 887 | typename Digraph::template NodeMap<int> _numMap; |
| | 888 | typename Digraph::template NodeMap<int> _retMap; |
| | 889 | typename Digraph::template NodeMap<Arc> _predMap; |
| | 890 | int _num; |
| | 891 | }; |
| | 892 | |
| | 893 | template <typename Digraph, typename NodeMap> |
| | 894 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| | 895 | public: |
| | 896 | typedef typename Digraph::Node Node; |
| | 897 | typedef typename Digraph::Arc Arc; |
| | 898 | typedef typename Digraph::Edge Edge; |
| | 899 | |
| | 900 | BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
| | 901 | NodeMap& compMap, int &compNum) |
| | 902 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
| | 903 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| | 904 | |
| | 905 | void start(const Node& node) { |
| | 906 | _predMap.set(node, INVALID); |
| | 907 | } |
| | 908 | |
| | 909 | void reach(const Node& node) { |
| | 910 | _numMap.set(node, _num); |
| | 911 | _retMap.set(node, _num); |
| | 912 | _nodeStack.push(node); |
| | 913 | ++_num; |
| | 914 | } |
| | 915 | |
| | 916 | void leave(const Node& node) { |
| | 917 | if (_numMap[node] <= _retMap[node]) { |
| | 918 | while (_nodeStack.top() != node) { |
| | 919 | _compMap.set(_nodeStack.top(), _compNum); |
| | 920 | _nodeStack.pop(); |
| | 921 | } |
| | 922 | _compMap.set(node, _compNum); |
| | 923 | _nodeStack.pop(); |
| | 924 | ++_compNum; |
| | 925 | } |
| | 926 | } |
| | 927 | |
| | 928 | void discover(const Arc& edge) { |
| | 929 | _predMap.set(_graph.target(edge), edge); |
| | 930 | } |
| | 931 | |
| | 932 | void examine(const Arc& edge) { |
| | 933 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
| | 934 | return; |
| | 935 | } |
| | 936 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 937 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 938 | } |
| | 939 | } |
| | 940 | |
| | 941 | void backtrack(const Arc& edge) { |
| | 942 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 943 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 944 | } |
| | 945 | } |
| | 946 | |
| | 947 | private: |
| | 948 | const Digraph& _graph; |
| | 949 | NodeMap& _compMap; |
| | 950 | int& _compNum; |
| | 951 | |
| | 952 | typename Digraph::template NodeMap<int> _numMap; |
| | 953 | typename Digraph::template NodeMap<int> _retMap; |
| | 954 | typename Digraph::template NodeMap<Arc> _predMap; |
| | 955 | std::stack<Node> _nodeStack; |
| | 956 | int _num; |
| | 957 | }; |
| | 958 | |
| | 959 | |
| | 960 | template <typename Digraph, typename ArcMap> |
| | 961 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
| | 962 | public: |
| | 963 | typedef typename Digraph::Node Node; |
| | 964 | typedef typename Digraph::Arc Arc; |
| | 965 | typedef typename Digraph::Edge Edge; |
| | 966 | |
| | 967 | BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
| | 968 | ArcMap& cutMap, int &cutNum) |
| | 969 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| | 970 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| | 971 | |
| | 972 | void start(const Node& node) { |
| | 973 | _predMap[node] = INVALID; |
| | 974 | } |
| | 975 | |
| | 976 | void reach(const Node& node) { |
| | 977 | _numMap.set(node, _num); |
| | 978 | _retMap.set(node, _num); |
| | 979 | ++_num; |
| | 980 | } |
| | 981 | |
| | 982 | void leave(const Node& node) { |
| | 983 | if (_numMap[node] <= _retMap[node]) { |
| | 984 | if (_predMap[node] != INVALID) { |
| | 985 | _cutMap.set(_predMap[node], true); |
| | 986 | ++_cutNum; |
| | 987 | } |
| | 988 | } |
| | 989 | } |
| | 990 | |
| | 991 | void discover(const Arc& edge) { |
| | 992 | _predMap.set(_graph.target(edge), edge); |
| | 993 | } |
| | 994 | |
| | 995 | void examine(const Arc& edge) { |
| | 996 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
| | 997 | return; |
| | 998 | } |
| | 999 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 1000 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 1001 | } |
| | 1002 | } |
| | 1003 | |
| | 1004 | void backtrack(const Arc& edge) { |
| | 1005 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| | 1006 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| | 1007 | } |
| | 1008 | } |
| | 1009 | |
| | 1010 | private: |
| | 1011 | const Digraph& _graph; |
| | 1012 | ArcMap& _cutMap; |
| | 1013 | int& _cutNum; |
| | 1014 | |
| | 1015 | typename Digraph::template NodeMap<int> _numMap; |
| | 1016 | typename Digraph::template NodeMap<int> _retMap; |
| | 1017 | typename Digraph::template NodeMap<Arc> _predMap; |
| | 1018 | int _num; |
| | 1019 | }; |
| | 1020 | } |
| | 1021 | |
| | 1022 | template <typename Graph> |
| | 1023 | int countBiEdgeConnectedComponents(const Graph& graph); |
| | 1024 | |
| | 1025 | /// \ingroup connectivity |
| | 1026 | /// |
| | 1027 | /// \brief Checks that the graph is bi-edge-connected. |
| | 1028 | /// |
| | 1029 | /// This function checks that the graph is bi-edge-connected. The undirected |
| | 1030 | /// graph is bi-edge-connected when any two nodes are connected with two |
| | 1031 | /// edge-disjoint paths. |
| | 1032 | /// |
| | 1033 | /// \param graph The undirected graph. |
| | 1034 | /// \return The number of components. |
| | 1035 | template <typename Graph> |
| | 1036 | bool biEdgeConnected(const Graph& graph) { |
| | 1037 | return countBiEdgeConnectedComponents(graph) <= 1; |
| | 1038 | } |
| | 1039 | |
| | 1040 | /// \ingroup connectivity |
| | 1041 | /// |
| | 1042 | /// \brief Count the bi-edge-connected components. |
| | 1043 | /// |
| | 1044 | /// This function count the bi-edge-connected components in an undirected |
| | 1045 | /// graph. The bi-edge-connected components are the classes of an equivalence |
| | 1046 | /// relation on the nodes. Two nodes are in relationship when they are |
| | 1047 | /// connected with at least two edge-disjoint paths. |
| | 1048 | /// |
| | 1049 | /// \param graph The undirected graph. |
| | 1050 | /// \return The number of components. |
| | 1051 | template <typename Graph> |
| | 1052 | int countBiEdgeConnectedComponents(const Graph& graph) { |
| | 1053 | checkConcept<concepts::Graph, Graph>(); |
| | 1054 | typedef typename Graph::NodeIt NodeIt; |
| | 1055 | |
| | 1056 | using namespace _topology_bits; |
| | 1057 | |
| | 1058 | typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
| | 1059 | |
| | 1060 | int compNum = 0; |
| | 1061 | Visitor visitor(graph, compNum); |
| | 1062 | |
| | 1063 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| | 1064 | dfs.init(); |
| | 1065 | |
| | 1066 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1067 | if (!dfs.reached(it)) { |
| | 1068 | dfs.addSource(it); |
| | 1069 | dfs.start(); |
| | 1070 | } |
| | 1071 | } |
| | 1072 | return compNum; |
| | 1073 | } |
| | 1074 | |
| | 1075 | /// \ingroup connectivity |
| | 1076 | /// |
| | 1077 | /// \brief Find the bi-edge-connected components. |
| | 1078 | /// |
| | 1079 | /// This function finds the bi-edge-connected components in an undirected |
| | 1080 | /// graph. The bi-edge-connected components are the classes of an equivalence |
| | 1081 | /// relation on the nodes. Two nodes are in relationship when they are |
| | 1082 | /// connected at least two edge-disjoint paths. |
| | 1083 | /// |
| | 1084 | /// \param graph The graph. |
| | 1085 | /// \retval compMap A writable node map. The values will be set from 0 to |
| | 1086 | /// the number of the biconnected components minus one. Each values |
| | 1087 | /// of the map will be set exactly once, the values of a certain component |
| | 1088 | /// will be set continuously. |
| | 1089 | /// \return The number of components. |
| | 1090 | /// |
| | 1091 | template <typename Graph, typename NodeMap> |
| | 1092 | int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
| | 1093 | checkConcept<concepts::Graph, Graph>(); |
| | 1094 | typedef typename Graph::NodeIt NodeIt; |
| | 1095 | typedef typename Graph::Node Node; |
| | 1096 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| | 1097 | |
| | 1098 | using namespace _topology_bits; |
| | 1099 | |
| | 1100 | typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
| | 1101 | |
| | 1102 | int compNum = 0; |
| | 1103 | Visitor visitor(graph, compMap, compNum); |
| | 1104 | |
| | 1105 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| | 1106 | dfs.init(); |
| | 1107 | |
| | 1108 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1109 | if (!dfs.reached(it)) { |
| | 1110 | dfs.addSource(it); |
| | 1111 | dfs.start(); |
| | 1112 | } |
| | 1113 | } |
| | 1114 | return compNum; |
| | 1115 | } |
| | 1116 | |
| | 1117 | /// \ingroup connectivity |
| | 1118 | /// |
| | 1119 | /// \brief Find the bi-edge-connected cut edges. |
| | 1120 | /// |
| | 1121 | /// This function finds the bi-edge-connected components in an undirected |
| | 1122 | /// graph. The bi-edge-connected components are the classes of an equivalence |
| | 1123 | /// relation on the nodes. Two nodes are in relationship when they are |
| | 1124 | /// connected with at least two edge-disjoint paths. The bi-edge-connected |
| | 1125 | /// components are separted by edges which are the cut edges of the |
| | 1126 | /// components. |
| | 1127 | /// |
| | 1128 | /// \param graph The graph. |
| | 1129 | /// \retval cutMap A writable node map. The values will be set true when the |
| | 1130 | /// edge is a cut edge. |
| | 1131 | /// \return The number of cut edges. |
| | 1132 | template <typename Graph, typename EdgeMap> |
| | 1133 | int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
| | 1134 | checkConcept<concepts::Graph, Graph>(); |
| | 1135 | typedef typename Graph::NodeIt NodeIt; |
| | 1136 | typedef typename Graph::Edge Edge; |
| | 1137 | checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| | 1138 | |
| | 1139 | using namespace _topology_bits; |
| | 1140 | |
| | 1141 | typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
| | 1142 | |
| | 1143 | int cutNum = 0; |
| | 1144 | Visitor visitor(graph, cutMap, cutNum); |
| | 1145 | |
| | 1146 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| | 1147 | dfs.init(); |
| | 1148 | |
| | 1149 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1150 | if (!dfs.reached(it)) { |
| | 1151 | dfs.addSource(it); |
| | 1152 | dfs.start(); |
| | 1153 | } |
| | 1154 | } |
| | 1155 | return cutNum; |
| | 1156 | } |
| | 1157 | |
| | 1158 | |
| | 1159 | namespace _topology_bits { |
| | 1160 | |
| | 1161 | template <typename Digraph, typename IntNodeMap> |
| | 1162 | class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
| | 1163 | public: |
| | 1164 | typedef typename Digraph::Node Node; |
| | 1165 | typedef typename Digraph::Arc edge; |
| | 1166 | |
| | 1167 | TopologicalSortVisitor(IntNodeMap& order, int num) |
| | 1168 | : _order(order), _num(num) {} |
| | 1169 | |
| | 1170 | void leave(const Node& node) { |
| | 1171 | _order.set(node, --_num); |
| | 1172 | } |
| | 1173 | |
| | 1174 | private: |
| | 1175 | IntNodeMap& _order; |
| | 1176 | int _num; |
| | 1177 | }; |
| | 1178 | |
| | 1179 | } |
| | 1180 | |
| | 1181 | /// \ingroup connectivity |
| | 1182 | /// |
| | 1183 | /// \brief Sort the nodes of a DAG into topolgical order. |
| | 1184 | /// |
| | 1185 | /// Sort the nodes of a DAG into topolgical order. |
| | 1186 | /// |
| | 1187 | /// \param graph The graph. It must be directed and acyclic. |
| | 1188 | /// \retval order A writable node map. The values will be set from 0 to |
| | 1189 | /// the number of the nodes in the graph minus one. Each values of the map |
| | 1190 | /// will be set exactly once, the values will be set descending order. |
| | 1191 | /// |
| | 1192 | /// \see checkedTopologicalSort |
| | 1193 | /// \see dag |
| | 1194 | template <typename Digraph, typename NodeMap> |
| | 1195 | void topologicalSort(const Digraph& graph, NodeMap& order) { |
| | 1196 | using namespace _topology_bits; |
| | 1197 | |
| | 1198 | checkConcept<concepts::Digraph, Digraph>(); |
| | 1199 | checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| | 1200 | |
| | 1201 | typedef typename Digraph::Node Node; |
| | 1202 | typedef typename Digraph::NodeIt NodeIt; |
| | 1203 | typedef typename Digraph::Arc Arc; |
| | 1204 | |
| | 1205 | TopologicalSortVisitor<Digraph, NodeMap> |
| | 1206 | visitor(order, countNodes(graph)); |
| | 1207 | |
| | 1208 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| | 1209 | dfs(graph, visitor); |
| | 1210 | |
| | 1211 | dfs.init(); |
| | 1212 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1213 | if (!dfs.reached(it)) { |
| | 1214 | dfs.addSource(it); |
| | 1215 | dfs.start(); |
| | 1216 | } |
| | 1217 | } |
| | 1218 | } |
| | 1219 | |
| | 1220 | /// \ingroup connectivity |
| | 1221 | /// |
| | 1222 | /// \brief Sort the nodes of a DAG into topolgical order. |
| | 1223 | /// |
| | 1224 | /// Sort the nodes of a DAG into topolgical order. It also checks |
| | 1225 | /// that the given graph is DAG. |
| | 1226 | /// |
| | 1227 | /// \param graph The graph. It must be directed and acyclic. |
| | 1228 | /// \retval order A readable - writable node map. The values will be set |
| | 1229 | /// from 0 to the number of the nodes in the graph minus one. Each values |
| | 1230 | /// of the map will be set exactly once, the values will be set descending |
| | 1231 | /// order. |
| | 1232 | /// \return %False when the graph is not DAG. |
| | 1233 | /// |
| | 1234 | /// \see topologicalSort |
| | 1235 | /// \see dag |
| | 1236 | template <typename Digraph, typename NodeMap> |
| | 1237 | bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) { |
| | 1238 | using namespace _topology_bits; |
| | 1239 | |
| | 1240 | checkConcept<concepts::Digraph, Digraph>(); |
| | 1241 | checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| | 1242 | NodeMap>(); |
| | 1243 | |
| | 1244 | typedef typename Digraph::Node Node; |
| | 1245 | typedef typename Digraph::NodeIt NodeIt; |
| | 1246 | typedef typename Digraph::Arc Arc; |
| | 1247 | |
| | 1248 | order = constMap<Node, int, -1>(); |
| | 1249 | |
| | 1250 | TopologicalSortVisitor<Digraph, NodeMap> |
| | 1251 | visitor(order, countNodes(graph)); |
| | 1252 | |
| | 1253 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| | 1254 | dfs(graph, visitor); |
| | 1255 | |
| | 1256 | dfs.init(); |
| | 1257 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1258 | if (!dfs.reached(it)) { |
| | 1259 | dfs.addSource(it); |
| | 1260 | while (!dfs.emptyQueue()) { |
| | 1261 | Arc edge = dfs.nextArc(); |
| | 1262 | Node target = graph.target(edge); |
| | 1263 | if (dfs.reached(target) && order[target] == -1) { |
| | 1264 | return false; |
| | 1265 | } |
| | 1266 | dfs.processNextArc(); |
| | 1267 | } |
| | 1268 | } |
| | 1269 | } |
| | 1270 | return true; |
| | 1271 | } |
| | 1272 | |
| | 1273 | /// \ingroup connectivity |
| | 1274 | /// |
| | 1275 | /// \brief Check that the given directed graph is a DAG. |
| | 1276 | /// |
| | 1277 | /// Check that the given directed graph is a DAG. The DAG is |
| | 1278 | /// an Directed Acyclic Digraph. |
| | 1279 | /// \return %False when the graph is not DAG. |
| | 1280 | /// \see acyclic |
| | 1281 | template <typename Digraph> |
| | 1282 | bool dag(const Digraph& graph) { |
| | 1283 | |
| | 1284 | checkConcept<concepts::Digraph, Digraph>(); |
| | 1285 | |
| | 1286 | typedef typename Digraph::Node Node; |
| | 1287 | typedef typename Digraph::NodeIt NodeIt; |
| | 1288 | typedef typename Digraph::Arc Arc; |
| | 1289 | |
| | 1290 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| | 1291 | |
| | 1292 | typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
| | 1293 | Create dfs(graph); |
| | 1294 | |
| | 1295 | ProcessedMap processed(graph); |
| | 1296 | dfs.processedMap(processed); |
| | 1297 | |
| | 1298 | dfs.init(); |
| | 1299 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1300 | if (!dfs.reached(it)) { |
| | 1301 | dfs.addSource(it); |
| | 1302 | while (!dfs.emptyQueue()) { |
| | 1303 | Arc edge = dfs.nextArc(); |
| | 1304 | Node target = graph.target(edge); |
| | 1305 | if (dfs.reached(target) && !processed[target]) { |
| | 1306 | return false; |
| | 1307 | } |
| | 1308 | dfs.processNextArc(); |
| | 1309 | } |
| | 1310 | } |
| | 1311 | } |
| | 1312 | return true; |
| | 1313 | } |
| | 1314 | |
| | 1315 | /// \ingroup connectivity |
| | 1316 | /// |
| | 1317 | /// \brief Check that the given undirected graph is acyclic. |
| | 1318 | /// |
| | 1319 | /// Check that the given undirected graph acyclic. |
| | 1320 | /// \param graph The undirected graph. |
| | 1321 | /// \return %True when there is no circle in the graph. |
| | 1322 | /// \see dag |
| | 1323 | template <typename Graph> |
| | 1324 | bool acyclic(const Graph& graph) { |
| | 1325 | checkConcept<concepts::Graph, Graph>(); |
| | 1326 | typedef typename Graph::Node Node; |
| | 1327 | typedef typename Graph::NodeIt NodeIt; |
| | 1328 | typedef typename Graph::Arc Arc; |
| | 1329 | Dfs<Graph> dfs(graph); |
| | 1330 | dfs.init(); |
| | 1331 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1332 | if (!dfs.reached(it)) { |
| | 1333 | dfs.addSource(it); |
| | 1334 | while (!dfs.emptyQueue()) { |
| | 1335 | Arc edge = dfs.nextArc(); |
| | 1336 | Node source = graph.source(edge); |
| | 1337 | Node target = graph.target(edge); |
| | 1338 | if (dfs.reached(target) && |
| | 1339 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
| | 1340 | return false; |
| | 1341 | } |
| | 1342 | dfs.processNextArc(); |
| | 1343 | } |
| | 1344 | } |
| | 1345 | } |
| | 1346 | return true; |
| | 1347 | } |
| | 1348 | |
| | 1349 | /// \ingroup connectivity |
| | 1350 | /// |
| | 1351 | /// \brief Check that the given undirected graph is tree. |
| | 1352 | /// |
| | 1353 | /// Check that the given undirected graph is tree. |
| | 1354 | /// \param graph The undirected graph. |
| | 1355 | /// \return %True when the graph is acyclic and connected. |
| | 1356 | template <typename Graph> |
| | 1357 | bool tree(const Graph& graph) { |
| | 1358 | checkConcept<concepts::Graph, Graph>(); |
| | 1359 | typedef typename Graph::Node Node; |
| | 1360 | typedef typename Graph::NodeIt NodeIt; |
| | 1361 | typedef typename Graph::Arc Arc; |
| | 1362 | Dfs<Graph> dfs(graph); |
| | 1363 | dfs.init(); |
| | 1364 | dfs.addSource(NodeIt(graph)); |
| | 1365 | while (!dfs.emptyQueue()) { |
| | 1366 | Arc edge = dfs.nextArc(); |
| | 1367 | Node source = graph.source(edge); |
| | 1368 | Node target = graph.target(edge); |
| | 1369 | if (dfs.reached(target) && |
| | 1370 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
| | 1371 | return false; |
| | 1372 | } |
| | 1373 | dfs.processNextArc(); |
| | 1374 | } |
| | 1375 | for (NodeIt it(graph); it != INVALID; ++it) { |
| | 1376 | if (!dfs.reached(it)) { |
| | 1377 | return false; |
| | 1378 | } |
| | 1379 | } |
| | 1380 | return true; |
| | 1381 | } |
| | 1382 | |
| | 1383 | namespace _topology_bits { |
| | 1384 | |
| | 1385 | template <typename Digraph> |
| | 1386 | class BipartiteVisitor : public BfsVisitor<Digraph> { |
| | 1387 | public: |
| | 1388 | typedef typename Digraph::Arc Arc; |
| | 1389 | typedef typename Digraph::Node Node; |
| | 1390 | |
| | 1391 | BipartiteVisitor(const Digraph& graph, bool& bipartite) |
| | 1392 | : _graph(graph), _part(graph), _bipartite(bipartite) {} |
| | 1393 | |
| | 1394 | void start(const Node& node) { |
| | 1395 | _part[node] = true; |
| | 1396 | } |
| | 1397 | void discover(const Arc& edge) { |
| | 1398 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| | 1399 | } |
| | 1400 | void examine(const Arc& edge) { |
| | 1401 | _bipartite = _bipartite && |
| | 1402 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| | 1403 | } |
| | 1404 | |
| | 1405 | private: |
| | 1406 | |
| | 1407 | const Digraph& _graph; |
| | 1408 | typename Digraph::template NodeMap<bool> _part; |
| | 1409 | bool& _bipartite; |
| | 1410 | }; |
| | 1411 | |
| | 1412 | template <typename Digraph, typename PartMap> |
| | 1413 | class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
| | 1414 | public: |
| | 1415 | typedef typename Digraph::Arc Arc; |
| | 1416 | typedef typename Digraph::Node Node; |
| | 1417 | |
| | 1418 | BipartitePartitionsVisitor(const Digraph& graph, |
| | 1419 | PartMap& part, bool& bipartite) |
| | 1420 | : _graph(graph), _part(part), _bipartite(bipartite) {} |
| | 1421 | |
| | 1422 | void start(const Node& node) { |
| | 1423 | _part.set(node, true); |
| | 1424 | } |
| | 1425 | void discover(const Arc& edge) { |
| | 1426 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| | 1427 | } |
| | 1428 | void examine(const Arc& edge) { |
| | 1429 | _bipartite = _bipartite && |
| | 1430 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| | 1431 | } |
| | 1432 | |
| | 1433 | private: |
| | 1434 | |
| | 1435 | const Digraph& _graph; |
| | 1436 | PartMap& _part; |
| | 1437 | bool& _bipartite; |
| | 1438 | }; |
| | 1439 | } |
| | 1440 | |
| | 1441 | /// \ingroup connectivity |
| | 1442 | /// |
| | 1443 | /// \brief Check if the given undirected graph is bipartite or not |
| | 1444 | /// |
| | 1445 | /// The function checks if the given undirected \c graph graph is bipartite |
| | 1446 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
| | 1447 | /// \param graph The undirected graph. |
| | 1448 | /// \return %True if \c graph is bipartite, %false otherwise. |
| | 1449 | /// \sa bipartitePartitions |
| | 1450 | template<typename Graph> |
| | 1451 | inline bool bipartite(const Graph &graph){ |
| | 1452 | using namespace _topology_bits; |
| | 1453 | |
| | 1454 | checkConcept<concepts::Graph, Graph>(); |
| | 1455 | |
| | 1456 | typedef typename Graph::NodeIt NodeIt; |
| | 1457 | typedef typename Graph::ArcIt ArcIt; |
| | 1458 | |
| | 1459 | bool bipartite = true; |
| | 1460 | |
| | 1461 | BipartiteVisitor<Graph> |
| | 1462 | visitor(graph, bipartite); |
| | 1463 | BfsVisit<Graph, BipartiteVisitor<Graph> > |
| | 1464 | bfs(graph, visitor); |
| | 1465 | bfs.init(); |
| | 1466 | for(NodeIt it(graph); it != INVALID; ++it) { |
| | 1467 | if(!bfs.reached(it)){ |
| | 1468 | bfs.addSource(it); |
| | 1469 | while (!bfs.emptyQueue()) { |
| | 1470 | bfs.processNextNode(); |
| | 1471 | if (!bipartite) return false; |
| | 1472 | } |
| | 1473 | } |
| | 1474 | } |
| | 1475 | return true; |
| | 1476 | } |
| | 1477 | |
| | 1478 | /// \ingroup connectivity |
| | 1479 | /// |
| | 1480 | /// \brief Check if the given undirected graph is bipartite or not |
| | 1481 | /// |
| | 1482 | /// The function checks if the given undirected graph is bipartite |
| | 1483 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
| | 1484 | /// During the execution, the \c partMap will be set as the two |
| | 1485 | /// partitions of the graph. |
| | 1486 | /// \param graph The undirected graph. |
| | 1487 | /// \retval partMap A writable bool map of nodes. It will be set as the |
| | 1488 | /// two partitions of the graph. |
| | 1489 | /// \return %True if \c graph is bipartite, %false otherwise. |
| | 1490 | template<typename Graph, typename NodeMap> |
| | 1491 | inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
| | 1492 | using namespace _topology_bits; |
| | 1493 | |
| | 1494 | checkConcept<concepts::Graph, Graph>(); |
| | 1495 | |
| | 1496 | typedef typename Graph::Node Node; |
| | 1497 | typedef typename Graph::NodeIt NodeIt; |
| | 1498 | typedef typename Graph::ArcIt ArcIt; |
| | 1499 | |
| | 1500 | bool bipartite = true; |
| | 1501 | |
| | 1502 | BipartitePartitionsVisitor<Graph, NodeMap> |
| | 1503 | visitor(graph, partMap, bipartite); |
| | 1504 | BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
| | 1505 | bfs(graph, visitor); |
| | 1506 | bfs.init(); |
| | 1507 | for(NodeIt it(graph); it != INVALID; ++it) { |
| | 1508 | if(!bfs.reached(it)){ |
| | 1509 | bfs.addSource(it); |
| | 1510 | while (!bfs.emptyQueue()) { |
| | 1511 | bfs.processNextNode(); |
| | 1512 | if (!bipartite) return false; |
| | 1513 | } |
| | 1514 | } |
| | 1515 | } |
| | 1516 | return true; |
| | 1517 | } |
| | 1518 | |
| | 1519 | /// \brief Returns true when there are not loop edges in the graph. |
| | 1520 | /// |
| | 1521 | /// Returns true when there are not loop edges in the graph. |
| | 1522 | template <typename Digraph> |
| | 1523 | bool loopFree(const Digraph& graph) { |
| | 1524 | for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) { |
| | 1525 | if (graph.source(it) == graph.target(it)) return false; |
| | 1526 | } |
| | 1527 | return true; |
| | 1528 | } |
| | 1529 | |
| | 1530 | /// \brief Returns true when there are not parallel edges in the graph. |
| | 1531 | /// |
| | 1532 | /// Returns true when there are not parallel edges in the graph. |
| | 1533 | template <typename Digraph> |
| | 1534 | bool parallelFree(const Digraph& graph) { |
| | 1535 | typename Digraph::template NodeMap<bool> reached(graph, false); |
| | 1536 | for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) { |
| | 1537 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| | 1538 | if (reached[graph.target(e)]) return false; |
| | 1539 | reached.set(graph.target(e), true); |
| | 1540 | } |
| | 1541 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| | 1542 | reached.set(graph.target(e), false); |
| | 1543 | } |
| | 1544 | } |
| | 1545 | return true; |
| | 1546 | } |
| | 1547 | |
| | 1548 | /// \brief Returns true when there are not loop edges and parallel |
| | 1549 | /// edges in the graph. |
| | 1550 | /// |
| | 1551 | /// Returns true when there are not loop edges and parallel edges in |
| | 1552 | /// the graph. |
| | 1553 | template <typename Digraph> |
| | 1554 | bool simpleDigraph(const Digraph& graph) { |
| | 1555 | typename Digraph::template NodeMap<bool> reached(graph, false); |
| | 1556 | for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) { |
| | 1557 | reached.set(n, true); |
| | 1558 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| | 1559 | if (reached[graph.target(e)]) return false; |
| | 1560 | reached.set(graph.target(e), true); |
| | 1561 | } |
| | 1562 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| | 1563 | reached.set(graph.target(e), false); |
| | 1564 | } |
| | 1565 | reached.set(n, false); |
| | 1566 | } |
| | 1567 | return true; |
| | 1568 | } |
| | 1569 | |
| | 1570 | } //namespace lemon |
| | 1571 | |
| | 1572 | #endif //LEMON_TOPOLOGY_H |