| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
| 4 | * |
| 5 | * Copyright (C) 2003-2008 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_TOPOLOGY_H |
| 20 | #define LEMON_TOPOLOGY_H |
| 21 | |
| 22 | #include <lemon/dfs.h> |
| 23 | #include <lemon/bfs.h> |
| 24 | #include <lemon/core.h> |
| 25 | #include <lemon/maps.h> |
| 26 | #include <lemon/adaptors.h> |
| 27 | |
| 28 | #include <lemon/concepts/digraph.h> |
| 29 | #include <lemon/concepts/graph.h> |
| 30 | #include <lemon/concept_check.h> |
| 31 | |
| 32 | #include <stack> |
| 33 | #include <functional> |
| 34 | |
| 35 | /// \ingroup connectivity |
| 36 | /// \file |
| 37 | /// \brief Connectivity algorithms |
| 38 | /// |
| 39 | /// Connectivity algorithms |
| 40 | |
| 41 | namespace lemon { |
| 42 | |
| 43 | /// \ingroup connectivity |
| 44 | /// |
| 45 | /// \brief Check whether the given undirected graph is connected. |
| 46 | /// |
| 47 | /// Check whether the given undirected graph is connected. |
| 48 | /// \param graph The undirected graph. |
| 49 | /// \return %True when there is path between any two nodes in the graph. |
| 50 | /// \note By definition, the empty graph is connected. |
| 51 | template <typename Graph> |
| 52 | bool connected(const Graph& graph) { |
| 53 | checkConcept<concepts::Graph, Graph>(); |
| 54 | typedef typename Graph::NodeIt NodeIt; |
| 55 | if (NodeIt(graph) == INVALID) return true; |
| 56 | Dfs<Graph> dfs(graph); |
| 57 | dfs.run(NodeIt(graph)); |
| 58 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 59 | if (!dfs.reached(it)) { |
| 60 | return false; |
| 61 | } |
| 62 | } |
| 63 | return true; |
| 64 | } |
| 65 | |
| 66 | /// \ingroup connectivity |
| 67 | /// |
| 68 | /// \brief Count the number of connected components of an undirected graph |
| 69 | /// |
| 70 | /// Count the number of connected components of an undirected graph |
| 71 | /// |
| 72 | /// \param graph The graph. It must be undirected. |
| 73 | /// \return The number of components |
| 74 | /// \note By definition, the empty graph consists |
| 75 | /// of zero connected components. |
| 76 | template <typename Graph> |
| 77 | int countConnectedComponents(const Graph &graph) { |
| 78 | checkConcept<concepts::Graph, Graph>(); |
| 79 | typedef typename Graph::Node Node; |
| 80 | typedef typename Graph::Arc Arc; |
| 81 | |
| 82 | typedef NullMap<Node, Arc> PredMap; |
| 83 | typedef NullMap<Node, int> DistMap; |
| 84 | |
| 85 | int compNum = 0; |
| 86 | typename Bfs<Graph>:: |
| 87 | template SetPredMap<PredMap>:: |
| 88 | template SetDistMap<DistMap>:: |
| 89 | Create bfs(graph); |
| 90 | |
| 91 | PredMap predMap; |
| 92 | bfs.predMap(predMap); |
| 93 | |
| 94 | DistMap distMap; |
| 95 | bfs.distMap(distMap); |
| 96 | |
| 97 | bfs.init(); |
| 98 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
| 99 | if (!bfs.reached(n)) { |
| 100 | bfs.addSource(n); |
| 101 | bfs.start(); |
| 102 | ++compNum; |
| 103 | } |
| 104 | } |
| 105 | return compNum; |
| 106 | } |
| 107 | |
| 108 | /// \ingroup connectivity |
| 109 | /// |
| 110 | /// \brief Find the connected components of an undirected graph |
| 111 | /// |
| 112 | /// Find the connected components of an undirected graph. |
| 113 | /// |
| 114 | /// \param graph The graph. It must be undirected. |
| 115 | /// \retval compMap A writable node map. The values will be set from 0 to |
| 116 | /// the number of the connected components minus one. Each values of the map |
| 117 | /// will be set exactly once, the values of a certain component will be |
| 118 | /// set continuously. |
| 119 | /// \return The number of components |
| 120 | /// |
| 121 | template <class Graph, class NodeMap> |
| 122 | int connectedComponents(const Graph &graph, NodeMap &compMap) { |
| 123 | checkConcept<concepts::Graph, Graph>(); |
| 124 | typedef typename Graph::Node Node; |
| 125 | typedef typename Graph::Arc Arc; |
| 126 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 127 | |
| 128 | typedef NullMap<Node, Arc> PredMap; |
| 129 | typedef NullMap<Node, int> DistMap; |
| 130 | |
| 131 | int compNum = 0; |
| 132 | typename Bfs<Graph>:: |
| 133 | template SetPredMap<PredMap>:: |
| 134 | template SetDistMap<DistMap>:: |
| 135 | Create bfs(graph); |
| 136 | |
| 137 | PredMap predMap; |
| 138 | bfs.predMap(predMap); |
| 139 | |
| 140 | DistMap distMap; |
| 141 | bfs.distMap(distMap); |
| 142 | |
| 143 | bfs.init(); |
| 144 | for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
| 145 | if(!bfs.reached(n)) { |
| 146 | bfs.addSource(n); |
| 147 | while (!bfs.emptyQueue()) { |
| 148 | compMap.set(bfs.nextNode(), compNum); |
| 149 | bfs.processNextNode(); |
| 150 | } |
| 151 | ++compNum; |
| 152 | } |
| 153 | } |
| 154 | return compNum; |
| 155 | } |
| 156 | |
| 157 | namespace _topology_bits { |
| 158 | |
| 159 | template <typename Digraph, typename Iterator > |
| 160 | struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
| 161 | public: |
| 162 | typedef typename Digraph::Node Node; |
| 163 | LeaveOrderVisitor(Iterator it) : _it(it) {} |
| 164 | |
| 165 | void leave(const Node& node) { |
| 166 | *(_it++) = node; |
| 167 | } |
| 168 | |
| 169 | private: |
| 170 | Iterator _it; |
| 171 | }; |
| 172 | |
| 173 | template <typename Digraph, typename Map> |
| 174 | struct FillMapVisitor : public DfsVisitor<Digraph> { |
| 175 | public: |
| 176 | typedef typename Digraph::Node Node; |
| 177 | typedef typename Map::Value Value; |
| 178 | |
| 179 | FillMapVisitor(Map& map, Value& value) |
| 180 | : _map(map), _value(value) {} |
| 181 | |
| 182 | void reach(const Node& node) { |
| 183 | _map.set(node, _value); |
| 184 | } |
| 185 | private: |
| 186 | Map& _map; |
| 187 | Value& _value; |
| 188 | }; |
| 189 | |
| 190 | template <typename Digraph, typename ArcMap> |
| 191 | struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
| 192 | public: |
| 193 | typedef typename Digraph::Node Node; |
| 194 | typedef typename Digraph::Arc Arc; |
| 195 | |
| 196 | StronglyConnectedCutEdgesVisitor(const Digraph& digraph, |
| 197 | ArcMap& cutMap, |
| 198 | int& cutNum) |
| 199 | : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
| 200 | _compMap(digraph), _num(0) { |
| 201 | } |
| 202 | |
| 203 | void stop(const Node&) { |
| 204 | ++_num; |
| 205 | } |
| 206 | |
| 207 | void reach(const Node& node) { |
| 208 | _compMap.set(node, _num); |
| 209 | } |
| 210 | |
| 211 | void examine(const Arc& arc) { |
| 212 | if (_compMap[_digraph.source(arc)] != |
| 213 | _compMap[_digraph.target(arc)]) { |
| 214 | _cutMap.set(arc, true); |
| 215 | ++_cutNum; |
| 216 | } |
| 217 | } |
| 218 | private: |
| 219 | const Digraph& _digraph; |
| 220 | ArcMap& _cutMap; |
| 221 | int& _cutNum; |
| 222 | |
| 223 | typename Digraph::template NodeMap<int> _compMap; |
| 224 | int _num; |
| 225 | }; |
| 226 | |
| 227 | } |
| 228 | |
| 229 | |
| 230 | /// \ingroup connectivity |
| 231 | /// |
| 232 | /// \brief Check whether the given directed graph is strongly connected. |
| 233 | /// |
| 234 | /// Check whether the given directed graph is strongly connected. The |
| 235 | /// graph is strongly connected when any two nodes of the graph are |
| 236 | /// connected with directed paths in both direction. |
| 237 | /// \return %False when the graph is not strongly connected. |
| 238 | /// \see connected |
| 239 | /// |
| 240 | /// \note By definition, the empty graph is strongly connected. |
| 241 | template <typename Digraph> |
| 242 | bool stronglyConnected(const Digraph& digraph) { |
| 243 | checkConcept<concepts::Digraph, Digraph>(); |
| 244 | |
| 245 | typedef typename Digraph::Node Node; |
| 246 | typedef typename Digraph::NodeIt NodeIt; |
| 247 | |
| 248 | typename Digraph::Node source = NodeIt(digraph); |
| 249 | if (source == INVALID) return true; |
| 250 | |
| 251 | using namespace _topology_bits; |
| 252 | |
| 253 | typedef DfsVisitor<Digraph> Visitor; |
| 254 | Visitor visitor; |
| 255 | |
| 256 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 257 | dfs.init(); |
| 258 | dfs.addSource(source); |
| 259 | dfs.start(); |
| 260 | |
| 261 | for (NodeIt it(digraph); it != INVALID; ++it) { |
| 262 | if (!dfs.reached(it)) { |
| 263 | return false; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | typedef ReverseDigraph<const Digraph> RDigraph; |
| 268 | RDigraph rdigraph(digraph); |
| 269 | |
| 270 | typedef DfsVisitor<Digraph> RVisitor; |
| 271 | RVisitor rvisitor; |
| 272 | |
| 273 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 274 | rdfs.init(); |
| 275 | rdfs.addSource(source); |
| 276 | rdfs.start(); |
| 277 | |
| 278 | for (NodeIt it(rdigraph); it != INVALID; ++it) { |
| 279 | if (!rdfs.reached(it)) { |
| 280 | return false; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | return true; |
| 285 | } |
| 286 | |
| 287 | /// \ingroup connectivity |
| 288 | /// |
| 289 | /// \brief Count the strongly connected components of a directed graph |
| 290 | /// |
| 291 | /// Count the strongly connected components of a directed graph. |
| 292 | /// The strongly connected components are the classes of an |
| 293 | /// equivalence relation on the nodes of the graph. Two nodes are in |
| 294 | /// the same class if they are connected with directed paths in both |
| 295 | /// direction. |
| 296 | /// |
| 297 | /// \param graph The graph. |
| 298 | /// \return The number of components |
| 299 | /// \note By definition, the empty graph has zero |
| 300 | /// strongly connected components. |
| 301 | template <typename Digraph> |
| 302 | int countStronglyConnectedComponents(const Digraph& digraph) { |
| 303 | checkConcept<concepts::Digraph, Digraph>(); |
| 304 | |
| 305 | using namespace _topology_bits; |
| 306 | |
| 307 | typedef typename Digraph::Node Node; |
| 308 | typedef typename Digraph::Arc Arc; |
| 309 | typedef typename Digraph::NodeIt NodeIt; |
| 310 | typedef typename Digraph::ArcIt ArcIt; |
| 311 | |
| 312 | typedef std::vector<Node> Container; |
| 313 | typedef typename Container::iterator Iterator; |
| 314 | |
| 315 | Container nodes(countNodes(digraph)); |
| 316 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 317 | Visitor visitor(nodes.begin()); |
| 318 | |
| 319 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 320 | dfs.init(); |
| 321 | for (NodeIt it(digraph); it != INVALID; ++it) { |
| 322 | if (!dfs.reached(it)) { |
| 323 | dfs.addSource(it); |
| 324 | dfs.start(); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | typedef typename Container::reverse_iterator RIterator; |
| 329 | typedef ReverseDigraph<const Digraph> RDigraph; |
| 330 | |
| 331 | RDigraph rdigraph(digraph); |
| 332 | |
| 333 | typedef DfsVisitor<Digraph> RVisitor; |
| 334 | RVisitor rvisitor; |
| 335 | |
| 336 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 337 | |
| 338 | int compNum = 0; |
| 339 | |
| 340 | rdfs.init(); |
| 341 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
| 342 | if (!rdfs.reached(*it)) { |
| 343 | rdfs.addSource(*it); |
| 344 | rdfs.start(); |
| 345 | ++compNum; |
| 346 | } |
| 347 | } |
| 348 | return compNum; |
| 349 | } |
| 350 | |
| 351 | /// \ingroup connectivity |
| 352 | /// |
| 353 | /// \brief Find the strongly connected components of a directed graph |
| 354 | /// |
| 355 | /// Find the strongly connected components of a directed graph. The |
| 356 | /// strongly connected components are the classes of an equivalence |
| 357 | /// relation on the nodes of the graph. Two nodes are in |
| 358 | /// relationship when there are directed paths between them in both |
| 359 | /// direction. In addition, the numbering of components will satisfy |
| 360 | /// that there is no arc going from a higher numbered component to |
| 361 | /// a lower. |
| 362 | /// |
| 363 | /// \param digraph The digraph. |
| 364 | /// \retval compMap A writable node map. The values will be set from 0 to |
| 365 | /// the number of the strongly connected components minus one. Each value |
| 366 | /// of the map will be set exactly once, the values of a certain component |
| 367 | /// will be set continuously. |
| 368 | /// \return The number of components |
| 369 | /// |
| 370 | template <typename Digraph, typename NodeMap> |
| 371 | int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
| 372 | checkConcept<concepts::Digraph, Digraph>(); |
| 373 | typedef typename Digraph::Node Node; |
| 374 | typedef typename Digraph::NodeIt NodeIt; |
| 375 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 376 | |
| 377 | using namespace _topology_bits; |
| 378 | |
| 379 | typedef std::vector<Node> Container; |
| 380 | typedef typename Container::iterator Iterator; |
| 381 | |
| 382 | Container nodes(countNodes(digraph)); |
| 383 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 384 | Visitor visitor(nodes.begin()); |
| 385 | |
| 386 | DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 387 | dfs.init(); |
| 388 | for (NodeIt it(digraph); it != INVALID; ++it) { |
| 389 | if (!dfs.reached(it)) { |
| 390 | dfs.addSource(it); |
| 391 | dfs.start(); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | typedef typename Container::reverse_iterator RIterator; |
| 396 | typedef ReverseDigraph<const Digraph> RDigraph; |
| 397 | |
| 398 | RDigraph rdigraph(digraph); |
| 399 | |
| 400 | int compNum = 0; |
| 401 | |
| 402 | typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
| 403 | RVisitor rvisitor(compMap, compNum); |
| 404 | |
| 405 | DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 406 | |
| 407 | rdfs.init(); |
| 408 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
| 409 | if (!rdfs.reached(*it)) { |
| 410 | rdfs.addSource(*it); |
| 411 | rdfs.start(); |
| 412 | ++compNum; |
| 413 | } |
| 414 | } |
| 415 | return compNum; |
| 416 | } |
| 417 | |
| 418 | /// \ingroup connectivity |
| 419 | /// |
| 420 | /// \brief Find the cut arcs of the strongly connected components. |
| 421 | /// |
| 422 | /// Find the cut arcs of the strongly connected components. |
| 423 | /// The strongly connected components are the classes of an equivalence |
| 424 | /// relation on the nodes of the graph. Two nodes are in relationship |
| 425 | /// when there are directed paths between them in both direction. |
| 426 | /// The strongly connected components are separated by the cut arcs. |
| 427 | /// |
| 428 | /// \param graph The graph. |
| 429 | /// \retval cutMap A writable node map. The values will be set true when the |
| 430 | /// arc is a cut arc. |
| 431 | /// |
| 432 | /// \return The number of cut arcs |
| 433 | template <typename Digraph, typename ArcMap> |
| 434 | int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) { |
| 435 | checkConcept<concepts::Digraph, Digraph>(); |
| 436 | typedef typename Digraph::Node Node; |
| 437 | typedef typename Digraph::Arc Arc; |
| 438 | typedef typename Digraph::NodeIt NodeIt; |
| 439 | checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
| 440 | |
| 441 | using namespace _topology_bits; |
| 442 | |
| 443 | typedef std::vector<Node> Container; |
| 444 | typedef typename Container::iterator Iterator; |
| 445 | |
| 446 | Container nodes(countNodes(graph)); |
| 447 | typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 448 | Visitor visitor(nodes.begin()); |
| 449 | |
| 450 | DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
| 451 | dfs.init(); |
| 452 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 453 | if (!dfs.reached(it)) { |
| 454 | dfs.addSource(it); |
| 455 | dfs.start(); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | typedef typename Container::reverse_iterator RIterator; |
| 460 | typedef ReverseDigraph<const Digraph> RDigraph; |
| 461 | |
| 462 | RDigraph rgraph(graph); |
| 463 | |
| 464 | int cutNum = 0; |
| 465 | |
| 466 | typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor; |
| 467 | RVisitor rvisitor(rgraph, cutMap, cutNum); |
| 468 | |
| 469 | DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
| 470 | |
| 471 | rdfs.init(); |
| 472 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
| 473 | if (!rdfs.reached(*it)) { |
| 474 | rdfs.addSource(*it); |
| 475 | rdfs.start(); |
| 476 | } |
| 477 | } |
| 478 | return cutNum; |
| 479 | } |
| 480 | |
| 481 | namespace _topology_bits { |
| 482 | |
| 483 | template <typename Digraph> |
| 484 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| 485 | public: |
| 486 | typedef typename Digraph::Node Node; |
| 487 | typedef typename Digraph::Arc Arc; |
| 488 | typedef typename Digraph::Edge Edge; |
| 489 | |
| 490 | CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| 491 | : _graph(graph), _compNum(compNum), |
| 492 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| 493 | |
| 494 | void start(const Node& node) { |
| 495 | _predMap.set(node, INVALID); |
| 496 | } |
| 497 | |
| 498 | void reach(const Node& node) { |
| 499 | _numMap.set(node, _num); |
| 500 | _retMap.set(node, _num); |
| 501 | ++_num; |
| 502 | } |
| 503 | |
| 504 | void discover(const Arc& edge) { |
| 505 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
| 506 | } |
| 507 | |
| 508 | void examine(const Arc& edge) { |
| 509 | if (_graph.source(edge) == _graph.target(edge) && |
| 510 | _graph.direction(edge)) { |
| 511 | ++_compNum; |
| 512 | return; |
| 513 | } |
| 514 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
| 515 | return; |
| 516 | } |
| 517 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
| 518 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | void backtrack(const Arc& edge) { |
| 523 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 524 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 525 | } |
| 526 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
| 527 | ++_compNum; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | private: |
| 532 | const Digraph& _graph; |
| 533 | int& _compNum; |
| 534 | |
| 535 | typename Digraph::template NodeMap<int> _numMap; |
| 536 | typename Digraph::template NodeMap<int> _retMap; |
| 537 | typename Digraph::template NodeMap<Node> _predMap; |
| 538 | int _num; |
| 539 | }; |
| 540 | |
| 541 | template <typename Digraph, typename ArcMap> |
| 542 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| 543 | public: |
| 544 | typedef typename Digraph::Node Node; |
| 545 | typedef typename Digraph::Arc Arc; |
| 546 | typedef typename Digraph::Edge Edge; |
| 547 | |
| 548 | BiNodeConnectedComponentsVisitor(const Digraph& graph, |
| 549 | ArcMap& compMap, int &compNum) |
| 550 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
| 551 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| 552 | |
| 553 | void start(const Node& node) { |
| 554 | _predMap.set(node, INVALID); |
| 555 | } |
| 556 | |
| 557 | void reach(const Node& node) { |
| 558 | _numMap.set(node, _num); |
| 559 | _retMap.set(node, _num); |
| 560 | ++_num; |
| 561 | } |
| 562 | |
| 563 | void discover(const Arc& edge) { |
| 564 | Node target = _graph.target(edge); |
| 565 | _predMap.set(target, edge); |
| 566 | _edgeStack.push(edge); |
| 567 | } |
| 568 | |
| 569 | void examine(const Arc& edge) { |
| 570 | Node source = _graph.source(edge); |
| 571 | Node target = _graph.target(edge); |
| 572 | if (source == target && _graph.direction(edge)) { |
| 573 | _compMap.set(edge, _compNum); |
| 574 | ++_compNum; |
| 575 | return; |
| 576 | } |
| 577 | if (_numMap[target] < _numMap[source]) { |
| 578 | if (_predMap[source] != _graph.oppositeArc(edge)) { |
| 579 | _edgeStack.push(edge); |
| 580 | } |
| 581 | } |
| 582 | if (_predMap[source] != INVALID && |
| 583 | target == _graph.source(_predMap[source])) { |
| 584 | return; |
| 585 | } |
| 586 | if (_retMap[source] > _numMap[target]) { |
| 587 | _retMap.set(source, _numMap[target]); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | void backtrack(const Arc& edge) { |
| 592 | Node source = _graph.source(edge); |
| 593 | Node target = _graph.target(edge); |
| 594 | if (_retMap[source] > _retMap[target]) { |
| 595 | _retMap.set(source, _retMap[target]); |
| 596 | } |
| 597 | if (_numMap[source] <= _retMap[target]) { |
| 598 | while (_edgeStack.top() != edge) { |
| 599 | _compMap.set(_edgeStack.top(), _compNum); |
| 600 | _edgeStack.pop(); |
| 601 | } |
| 602 | _compMap.set(edge, _compNum); |
| 603 | _edgeStack.pop(); |
| 604 | ++_compNum; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | private: |
| 609 | const Digraph& _graph; |
| 610 | ArcMap& _compMap; |
| 611 | int& _compNum; |
| 612 | |
| 613 | typename Digraph::template NodeMap<int> _numMap; |
| 614 | typename Digraph::template NodeMap<int> _retMap; |
| 615 | typename Digraph::template NodeMap<Arc> _predMap; |
| 616 | std::stack<Edge> _edgeStack; |
| 617 | int _num; |
| 618 | }; |
| 619 | |
| 620 | |
| 621 | template <typename Digraph, typename NodeMap> |
| 622 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> { |
| 623 | public: |
| 624 | typedef typename Digraph::Node Node; |
| 625 | typedef typename Digraph::Arc Arc; |
| 626 | typedef typename Digraph::Edge Edge; |
| 627 | |
| 628 | BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
| 629 | int& cutNum) |
| 630 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| 631 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| 632 | |
| 633 | void start(const Node& node) { |
| 634 | _predMap.set(node, INVALID); |
| 635 | rootCut = false; |
| 636 | } |
| 637 | |
| 638 | void reach(const Node& node) { |
| 639 | _numMap.set(node, _num); |
| 640 | _retMap.set(node, _num); |
| 641 | ++_num; |
| 642 | } |
| 643 | |
| 644 | void discover(const Arc& edge) { |
| 645 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
| 646 | } |
| 647 | |
| 648 | void examine(const Arc& edge) { |
| 649 | if (_graph.source(edge) == _graph.target(edge) && |
| 650 | _graph.direction(edge)) { |
| 651 | if (!_cutMap[_graph.source(edge)]) { |
| 652 | _cutMap.set(_graph.source(edge), true); |
| 653 | ++_cutNum; |
| 654 | } |
| 655 | return; |
| 656 | } |
| 657 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
| 658 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
| 659 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | void backtrack(const Arc& edge) { |
| 664 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 665 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 666 | } |
| 667 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
| 668 | if (_predMap[_graph.source(edge)] != INVALID) { |
| 669 | if (!_cutMap[_graph.source(edge)]) { |
| 670 | _cutMap.set(_graph.source(edge), true); |
| 671 | ++_cutNum; |
| 672 | } |
| 673 | } else if (rootCut) { |
| 674 | if (!_cutMap[_graph.source(edge)]) { |
| 675 | _cutMap.set(_graph.source(edge), true); |
| 676 | ++_cutNum; |
| 677 | } |
| 678 | } else { |
| 679 | rootCut = true; |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | private: |
| 685 | const Digraph& _graph; |
| 686 | NodeMap& _cutMap; |
| 687 | int& _cutNum; |
| 688 | |
| 689 | typename Digraph::template NodeMap<int> _numMap; |
| 690 | typename Digraph::template NodeMap<int> _retMap; |
| 691 | typename Digraph::template NodeMap<Node> _predMap; |
| 692 | std::stack<Edge> _edgeStack; |
| 693 | int _num; |
| 694 | bool rootCut; |
| 695 | }; |
| 696 | |
| 697 | } |
| 698 | |
| 699 | template <typename Graph> |
| 700 | int countBiNodeConnectedComponents(const Graph& graph); |
| 701 | |
| 702 | /// \ingroup connectivity |
| 703 | /// |
| 704 | /// \brief Checks the graph is bi-node-connected. |
| 705 | /// |
| 706 | /// This function checks that the undirected graph is bi-node-connected |
| 707 | /// graph. The graph is bi-node-connected if any two undirected edge is |
| 708 | /// on same circle. |
| 709 | /// |
| 710 | /// \param graph The graph. |
| 711 | /// \return %True when the graph bi-node-connected. |
| 712 | template <typename Graph> |
| 713 | bool biNodeConnected(const Graph& graph) { |
| 714 | return countBiNodeConnectedComponents(graph) <= 1; |
| 715 | } |
| 716 | |
| 717 | /// \ingroup connectivity |
| 718 | /// |
| 719 | /// \brief Count the biconnected components. |
| 720 | /// |
| 721 | /// This function finds the bi-node-connected components in an undirected |
| 722 | /// graph. The biconnected components are the classes of an equivalence |
| 723 | /// relation on the undirected edges. Two undirected edge is in relationship |
| 724 | /// when they are on same circle. |
| 725 | /// |
| 726 | /// \param graph The graph. |
| 727 | /// \return The number of components. |
| 728 | template <typename Graph> |
| 729 | int countBiNodeConnectedComponents(const Graph& graph) { |
| 730 | checkConcept<concepts::Graph, Graph>(); |
| 731 | typedef typename Graph::NodeIt NodeIt; |
| 732 | |
| 733 | using namespace _topology_bits; |
| 734 | |
| 735 | typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
| 736 | |
| 737 | int compNum = 0; |
| 738 | Visitor visitor(graph, compNum); |
| 739 | |
| 740 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 741 | dfs.init(); |
| 742 | |
| 743 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 744 | if (!dfs.reached(it)) { |
| 745 | dfs.addSource(it); |
| 746 | dfs.start(); |
| 747 | } |
| 748 | } |
| 749 | return compNum; |
| 750 | } |
| 751 | |
| 752 | /// \ingroup connectivity |
| 753 | /// |
| 754 | /// \brief Find the bi-node-connected components. |
| 755 | /// |
| 756 | /// This function finds the bi-node-connected components in an undirected |
| 757 | /// graph. The bi-node-connected components are the classes of an equivalence |
| 758 | /// relation on the undirected edges. Two undirected edge are in relationship |
| 759 | /// when they are on same circle. |
| 760 | /// |
| 761 | /// \param graph The graph. |
| 762 | /// \retval compMap A writable uedge map. The values will be set from 0 |
| 763 | /// to the number of the biconnected components minus one. Each values |
| 764 | /// of the map will be set exactly once, the values of a certain component |
| 765 | /// will be set continuously. |
| 766 | /// \return The number of components. |
| 767 | /// |
| 768 | template <typename Graph, typename EdgeMap> |
| 769 | int biNodeConnectedComponents(const Graph& graph, |
| 770 | EdgeMap& compMap) { |
| 771 | checkConcept<concepts::Graph, Graph>(); |
| 772 | typedef typename Graph::NodeIt NodeIt; |
| 773 | typedef typename Graph::Edge Edge; |
| 774 | checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
| 775 | |
| 776 | using namespace _topology_bits; |
| 777 | |
| 778 | typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
| 779 | |
| 780 | int compNum = 0; |
| 781 | Visitor visitor(graph, compMap, compNum); |
| 782 | |
| 783 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 784 | dfs.init(); |
| 785 | |
| 786 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 787 | if (!dfs.reached(it)) { |
| 788 | dfs.addSource(it); |
| 789 | dfs.start(); |
| 790 | } |
| 791 | } |
| 792 | return compNum; |
| 793 | } |
| 794 | |
| 795 | /// \ingroup connectivity |
| 796 | /// |
| 797 | /// \brief Find the bi-node-connected cut nodes. |
| 798 | /// |
| 799 | /// This function finds the bi-node-connected cut nodes in an undirected |
| 800 | /// graph. The bi-node-connected components are the classes of an equivalence |
| 801 | /// relation on the undirected edges. Two undirected edges are in |
| 802 | /// relationship when they are on same circle. The biconnected components |
| 803 | /// are separted by nodes which are the cut nodes of the components. |
| 804 | /// |
| 805 | /// \param graph The graph. |
| 806 | /// \retval cutMap A writable edge map. The values will be set true when |
| 807 | /// the node separate two or more components. |
| 808 | /// \return The number of the cut nodes. |
| 809 | template <typename Graph, typename NodeMap> |
| 810 | int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
| 811 | checkConcept<concepts::Graph, Graph>(); |
| 812 | typedef typename Graph::Node Node; |
| 813 | typedef typename Graph::NodeIt NodeIt; |
| 814 | checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
| 815 | |
| 816 | using namespace _topology_bits; |
| 817 | |
| 818 | typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
| 819 | |
| 820 | int cutNum = 0; |
| 821 | Visitor visitor(graph, cutMap, cutNum); |
| 822 | |
| 823 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 824 | dfs.init(); |
| 825 | |
| 826 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 827 | if (!dfs.reached(it)) { |
| 828 | dfs.addSource(it); |
| 829 | dfs.start(); |
| 830 | } |
| 831 | } |
| 832 | return cutNum; |
| 833 | } |
| 834 | |
| 835 | namespace _topology_bits { |
| 836 | |
| 837 | template <typename Digraph> |
| 838 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| 839 | public: |
| 840 | typedef typename Digraph::Node Node; |
| 841 | typedef typename Digraph::Arc Arc; |
| 842 | typedef typename Digraph::Edge Edge; |
| 843 | |
| 844 | CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| 845 | : _graph(graph), _compNum(compNum), |
| 846 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| 847 | |
| 848 | void start(const Node& node) { |
| 849 | _predMap.set(node, INVALID); |
| 850 | } |
| 851 | |
| 852 | void reach(const Node& node) { |
| 853 | _numMap.set(node, _num); |
| 854 | _retMap.set(node, _num); |
| 855 | ++_num; |
| 856 | } |
| 857 | |
| 858 | void leave(const Node& node) { |
| 859 | if (_numMap[node] <= _retMap[node]) { |
| 860 | ++_compNum; |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | void discover(const Arc& edge) { |
| 865 | _predMap.set(_graph.target(edge), edge); |
| 866 | } |
| 867 | |
| 868 | void examine(const Arc& edge) { |
| 869 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
| 870 | return; |
| 871 | } |
| 872 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 873 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | void backtrack(const Arc& edge) { |
| 878 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 879 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | private: |
| 884 | const Digraph& _graph; |
| 885 | int& _compNum; |
| 886 | |
| 887 | typename Digraph::template NodeMap<int> _numMap; |
| 888 | typename Digraph::template NodeMap<int> _retMap; |
| 889 | typename Digraph::template NodeMap<Arc> _predMap; |
| 890 | int _num; |
| 891 | }; |
| 892 | |
| 893 | template <typename Digraph, typename NodeMap> |
| 894 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
| 895 | public: |
| 896 | typedef typename Digraph::Node Node; |
| 897 | typedef typename Digraph::Arc Arc; |
| 898 | typedef typename Digraph::Edge Edge; |
| 899 | |
| 900 | BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
| 901 | NodeMap& compMap, int &compNum) |
| 902 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
| 903 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| 904 | |
| 905 | void start(const Node& node) { |
| 906 | _predMap.set(node, INVALID); |
| 907 | } |
| 908 | |
| 909 | void reach(const Node& node) { |
| 910 | _numMap.set(node, _num); |
| 911 | _retMap.set(node, _num); |
| 912 | _nodeStack.push(node); |
| 913 | ++_num; |
| 914 | } |
| 915 | |
| 916 | void leave(const Node& node) { |
| 917 | if (_numMap[node] <= _retMap[node]) { |
| 918 | while (_nodeStack.top() != node) { |
| 919 | _compMap.set(_nodeStack.top(), _compNum); |
| 920 | _nodeStack.pop(); |
| 921 | } |
| 922 | _compMap.set(node, _compNum); |
| 923 | _nodeStack.pop(); |
| 924 | ++_compNum; |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | void discover(const Arc& edge) { |
| 929 | _predMap.set(_graph.target(edge), edge); |
| 930 | } |
| 931 | |
| 932 | void examine(const Arc& edge) { |
| 933 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
| 934 | return; |
| 935 | } |
| 936 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 937 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | void backtrack(const Arc& edge) { |
| 942 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 943 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | private: |
| 948 | const Digraph& _graph; |
| 949 | NodeMap& _compMap; |
| 950 | int& _compNum; |
| 951 | |
| 952 | typename Digraph::template NodeMap<int> _numMap; |
| 953 | typename Digraph::template NodeMap<int> _retMap; |
| 954 | typename Digraph::template NodeMap<Arc> _predMap; |
| 955 | std::stack<Node> _nodeStack; |
| 956 | int _num; |
| 957 | }; |
| 958 | |
| 959 | |
| 960 | template <typename Digraph, typename ArcMap> |
| 961 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> { |
| 962 | public: |
| 963 | typedef typename Digraph::Node Node; |
| 964 | typedef typename Digraph::Arc Arc; |
| 965 | typedef typename Digraph::Edge Edge; |
| 966 | |
| 967 | BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
| 968 | ArcMap& cutMap, int &cutNum) |
| 969 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| 970 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
| 971 | |
| 972 | void start(const Node& node) { |
| 973 | _predMap[node] = INVALID; |
| 974 | } |
| 975 | |
| 976 | void reach(const Node& node) { |
| 977 | _numMap.set(node, _num); |
| 978 | _retMap.set(node, _num); |
| 979 | ++_num; |
| 980 | } |
| 981 | |
| 982 | void leave(const Node& node) { |
| 983 | if (_numMap[node] <= _retMap[node]) { |
| 984 | if (_predMap[node] != INVALID) { |
| 985 | _cutMap.set(_predMap[node], true); |
| 986 | ++_cutNum; |
| 987 | } |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | void discover(const Arc& edge) { |
| 992 | _predMap.set(_graph.target(edge), edge); |
| 993 | } |
| 994 | |
| 995 | void examine(const Arc& edge) { |
| 996 | if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
| 997 | return; |
| 998 | } |
| 999 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 1000 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | void backtrack(const Arc& edge) { |
| 1005 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
| 1006 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | private: |
| 1011 | const Digraph& _graph; |
| 1012 | ArcMap& _cutMap; |
| 1013 | int& _cutNum; |
| 1014 | |
| 1015 | typename Digraph::template NodeMap<int> _numMap; |
| 1016 | typename Digraph::template NodeMap<int> _retMap; |
| 1017 | typename Digraph::template NodeMap<Arc> _predMap; |
| 1018 | int _num; |
| 1019 | }; |
| 1020 | } |
| 1021 | |
| 1022 | template <typename Graph> |
| 1023 | int countBiEdgeConnectedComponents(const Graph& graph); |
| 1024 | |
| 1025 | /// \ingroup connectivity |
| 1026 | /// |
| 1027 | /// \brief Checks that the graph is bi-edge-connected. |
| 1028 | /// |
| 1029 | /// This function checks that the graph is bi-edge-connected. The undirected |
| 1030 | /// graph is bi-edge-connected when any two nodes are connected with two |
| 1031 | /// edge-disjoint paths. |
| 1032 | /// |
| 1033 | /// \param graph The undirected graph. |
| 1034 | /// \return The number of components. |
| 1035 | template <typename Graph> |
| 1036 | bool biEdgeConnected(const Graph& graph) { |
| 1037 | return countBiEdgeConnectedComponents(graph) <= 1; |
| 1038 | } |
| 1039 | |
| 1040 | /// \ingroup connectivity |
| 1041 | /// |
| 1042 | /// \brief Count the bi-edge-connected components. |
| 1043 | /// |
| 1044 | /// This function count the bi-edge-connected components in an undirected |
| 1045 | /// graph. The bi-edge-connected components are the classes of an equivalence |
| 1046 | /// relation on the nodes. Two nodes are in relationship when they are |
| 1047 | /// connected with at least two edge-disjoint paths. |
| 1048 | /// |
| 1049 | /// \param graph The undirected graph. |
| 1050 | /// \return The number of components. |
| 1051 | template <typename Graph> |
| 1052 | int countBiEdgeConnectedComponents(const Graph& graph) { |
| 1053 | checkConcept<concepts::Graph, Graph>(); |
| 1054 | typedef typename Graph::NodeIt NodeIt; |
| 1055 | |
| 1056 | using namespace _topology_bits; |
| 1057 | |
| 1058 | typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
| 1059 | |
| 1060 | int compNum = 0; |
| 1061 | Visitor visitor(graph, compNum); |
| 1062 | |
| 1063 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1064 | dfs.init(); |
| 1065 | |
| 1066 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1067 | if (!dfs.reached(it)) { |
| 1068 | dfs.addSource(it); |
| 1069 | dfs.start(); |
| 1070 | } |
| 1071 | } |
| 1072 | return compNum; |
| 1073 | } |
| 1074 | |
| 1075 | /// \ingroup connectivity |
| 1076 | /// |
| 1077 | /// \brief Find the bi-edge-connected components. |
| 1078 | /// |
| 1079 | /// This function finds the bi-edge-connected components in an undirected |
| 1080 | /// graph. The bi-edge-connected components are the classes of an equivalence |
| 1081 | /// relation on the nodes. Two nodes are in relationship when they are |
| 1082 | /// connected at least two edge-disjoint paths. |
| 1083 | /// |
| 1084 | /// \param graph The graph. |
| 1085 | /// \retval compMap A writable node map. The values will be set from 0 to |
| 1086 | /// the number of the biconnected components minus one. Each values |
| 1087 | /// of the map will be set exactly once, the values of a certain component |
| 1088 | /// will be set continuously. |
| 1089 | /// \return The number of components. |
| 1090 | /// |
| 1091 | template <typename Graph, typename NodeMap> |
| 1092 | int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
| 1093 | checkConcept<concepts::Graph, Graph>(); |
| 1094 | typedef typename Graph::NodeIt NodeIt; |
| 1095 | typedef typename Graph::Node Node; |
| 1096 | checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 1097 | |
| 1098 | using namespace _topology_bits; |
| 1099 | |
| 1100 | typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
| 1101 | |
| 1102 | int compNum = 0; |
| 1103 | Visitor visitor(graph, compMap, compNum); |
| 1104 | |
| 1105 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1106 | dfs.init(); |
| 1107 | |
| 1108 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1109 | if (!dfs.reached(it)) { |
| 1110 | dfs.addSource(it); |
| 1111 | dfs.start(); |
| 1112 | } |
| 1113 | } |
| 1114 | return compNum; |
| 1115 | } |
| 1116 | |
| 1117 | /// \ingroup connectivity |
| 1118 | /// |
| 1119 | /// \brief Find the bi-edge-connected cut edges. |
| 1120 | /// |
| 1121 | /// This function finds the bi-edge-connected components in an undirected |
| 1122 | /// graph. The bi-edge-connected components are the classes of an equivalence |
| 1123 | /// relation on the nodes. Two nodes are in relationship when they are |
| 1124 | /// connected with at least two edge-disjoint paths. The bi-edge-connected |
| 1125 | /// components are separted by edges which are the cut edges of the |
| 1126 | /// components. |
| 1127 | /// |
| 1128 | /// \param graph The graph. |
| 1129 | /// \retval cutMap A writable node map. The values will be set true when the |
| 1130 | /// edge is a cut edge. |
| 1131 | /// \return The number of cut edges. |
| 1132 | template <typename Graph, typename EdgeMap> |
| 1133 | int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
| 1134 | checkConcept<concepts::Graph, Graph>(); |
| 1135 | typedef typename Graph::NodeIt NodeIt; |
| 1136 | typedef typename Graph::Edge Edge; |
| 1137 | checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| 1138 | |
| 1139 | using namespace _topology_bits; |
| 1140 | |
| 1141 | typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
| 1142 | |
| 1143 | int cutNum = 0; |
| 1144 | Visitor visitor(graph, cutMap, cutNum); |
| 1145 | |
| 1146 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1147 | dfs.init(); |
| 1148 | |
| 1149 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1150 | if (!dfs.reached(it)) { |
| 1151 | dfs.addSource(it); |
| 1152 | dfs.start(); |
| 1153 | } |
| 1154 | } |
| 1155 | return cutNum; |
| 1156 | } |
| 1157 | |
| 1158 | |
| 1159 | namespace _topology_bits { |
| 1160 | |
| 1161 | template <typename Digraph, typename IntNodeMap> |
| 1162 | class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
| 1163 | public: |
| 1164 | typedef typename Digraph::Node Node; |
| 1165 | typedef typename Digraph::Arc edge; |
| 1166 | |
| 1167 | TopologicalSortVisitor(IntNodeMap& order, int num) |
| 1168 | : _order(order), _num(num) {} |
| 1169 | |
| 1170 | void leave(const Node& node) { |
| 1171 | _order.set(node, --_num); |
| 1172 | } |
| 1173 | |
| 1174 | private: |
| 1175 | IntNodeMap& _order; |
| 1176 | int _num; |
| 1177 | }; |
| 1178 | |
| 1179 | } |
| 1180 | |
| 1181 | /// \ingroup connectivity |
| 1182 | /// |
| 1183 | /// \brief Sort the nodes of a DAG into topolgical order. |
| 1184 | /// |
| 1185 | /// Sort the nodes of a DAG into topolgical order. |
| 1186 | /// |
| 1187 | /// \param graph The graph. It must be directed and acyclic. |
| 1188 | /// \retval order A writable node map. The values will be set from 0 to |
| 1189 | /// the number of the nodes in the graph minus one. Each values of the map |
| 1190 | /// will be set exactly once, the values will be set descending order. |
| 1191 | /// |
| 1192 | /// \see checkedTopologicalSort |
| 1193 | /// \see dag |
| 1194 | template <typename Digraph, typename NodeMap> |
| 1195 | void topologicalSort(const Digraph& graph, NodeMap& order) { |
| 1196 | using namespace _topology_bits; |
| 1197 | |
| 1198 | checkConcept<concepts::Digraph, Digraph>(); |
| 1199 | checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1200 | |
| 1201 | typedef typename Digraph::Node Node; |
| 1202 | typedef typename Digraph::NodeIt NodeIt; |
| 1203 | typedef typename Digraph::Arc Arc; |
| 1204 | |
| 1205 | TopologicalSortVisitor<Digraph, NodeMap> |
| 1206 | visitor(order, countNodes(graph)); |
| 1207 | |
| 1208 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1209 | dfs(graph, visitor); |
| 1210 | |
| 1211 | dfs.init(); |
| 1212 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1213 | if (!dfs.reached(it)) { |
| 1214 | dfs.addSource(it); |
| 1215 | dfs.start(); |
| 1216 | } |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | /// \ingroup connectivity |
| 1221 | /// |
| 1222 | /// \brief Sort the nodes of a DAG into topolgical order. |
| 1223 | /// |
| 1224 | /// Sort the nodes of a DAG into topolgical order. It also checks |
| 1225 | /// that the given graph is DAG. |
| 1226 | /// |
| 1227 | /// \param graph The graph. It must be directed and acyclic. |
| 1228 | /// \retval order A readable - writable node map. The values will be set |
| 1229 | /// from 0 to the number of the nodes in the graph minus one. Each values |
| 1230 | /// of the map will be set exactly once, the values will be set descending |
| 1231 | /// order. |
| 1232 | /// \return %False when the graph is not DAG. |
| 1233 | /// |
| 1234 | /// \see topologicalSort |
| 1235 | /// \see dag |
| 1236 | template <typename Digraph, typename NodeMap> |
| 1237 | bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) { |
| 1238 | using namespace _topology_bits; |
| 1239 | |
| 1240 | checkConcept<concepts::Digraph, Digraph>(); |
| 1241 | checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| 1242 | NodeMap>(); |
| 1243 | |
| 1244 | typedef typename Digraph::Node Node; |
| 1245 | typedef typename Digraph::NodeIt NodeIt; |
| 1246 | typedef typename Digraph::Arc Arc; |
| 1247 | |
| 1248 | order = constMap<Node, int, -1>(); |
| 1249 | |
| 1250 | TopologicalSortVisitor<Digraph, NodeMap> |
| 1251 | visitor(order, countNodes(graph)); |
| 1252 | |
| 1253 | DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1254 | dfs(graph, visitor); |
| 1255 | |
| 1256 | dfs.init(); |
| 1257 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1258 | if (!dfs.reached(it)) { |
| 1259 | dfs.addSource(it); |
| 1260 | while (!dfs.emptyQueue()) { |
| 1261 | Arc edge = dfs.nextArc(); |
| 1262 | Node target = graph.target(edge); |
| 1263 | if (dfs.reached(target) && order[target] == -1) { |
| 1264 | return false; |
| 1265 | } |
| 1266 | dfs.processNextArc(); |
| 1267 | } |
| 1268 | } |
| 1269 | } |
| 1270 | return true; |
| 1271 | } |
| 1272 | |
| 1273 | /// \ingroup connectivity |
| 1274 | /// |
| 1275 | /// \brief Check that the given directed graph is a DAG. |
| 1276 | /// |
| 1277 | /// Check that the given directed graph is a DAG. The DAG is |
| 1278 | /// an Directed Acyclic Digraph. |
| 1279 | /// \return %False when the graph is not DAG. |
| 1280 | /// \see acyclic |
| 1281 | template <typename Digraph> |
| 1282 | bool dag(const Digraph& graph) { |
| 1283 | |
| 1284 | checkConcept<concepts::Digraph, Digraph>(); |
| 1285 | |
| 1286 | typedef typename Digraph::Node Node; |
| 1287 | typedef typename Digraph::NodeIt NodeIt; |
| 1288 | typedef typename Digraph::Arc Arc; |
| 1289 | |
| 1290 | typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 1291 | |
| 1292 | typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
| 1293 | Create dfs(graph); |
| 1294 | |
| 1295 | ProcessedMap processed(graph); |
| 1296 | dfs.processedMap(processed); |
| 1297 | |
| 1298 | dfs.init(); |
| 1299 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1300 | if (!dfs.reached(it)) { |
| 1301 | dfs.addSource(it); |
| 1302 | while (!dfs.emptyQueue()) { |
| 1303 | Arc edge = dfs.nextArc(); |
| 1304 | Node target = graph.target(edge); |
| 1305 | if (dfs.reached(target) && !processed[target]) { |
| 1306 | return false; |
| 1307 | } |
| 1308 | dfs.processNextArc(); |
| 1309 | } |
| 1310 | } |
| 1311 | } |
| 1312 | return true; |
| 1313 | } |
| 1314 | |
| 1315 | /// \ingroup connectivity |
| 1316 | /// |
| 1317 | /// \brief Check that the given undirected graph is acyclic. |
| 1318 | /// |
| 1319 | /// Check that the given undirected graph acyclic. |
| 1320 | /// \param graph The undirected graph. |
| 1321 | /// \return %True when there is no circle in the graph. |
| 1322 | /// \see dag |
| 1323 | template <typename Graph> |
| 1324 | bool acyclic(const Graph& graph) { |
| 1325 | checkConcept<concepts::Graph, Graph>(); |
| 1326 | typedef typename Graph::Node Node; |
| 1327 | typedef typename Graph::NodeIt NodeIt; |
| 1328 | typedef typename Graph::Arc Arc; |
| 1329 | Dfs<Graph> dfs(graph); |
| 1330 | dfs.init(); |
| 1331 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1332 | if (!dfs.reached(it)) { |
| 1333 | dfs.addSource(it); |
| 1334 | while (!dfs.emptyQueue()) { |
| 1335 | Arc edge = dfs.nextArc(); |
| 1336 | Node source = graph.source(edge); |
| 1337 | Node target = graph.target(edge); |
| 1338 | if (dfs.reached(target) && |
| 1339 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
| 1340 | return false; |
| 1341 | } |
| 1342 | dfs.processNextArc(); |
| 1343 | } |
| 1344 | } |
| 1345 | } |
| 1346 | return true; |
| 1347 | } |
| 1348 | |
| 1349 | /// \ingroup connectivity |
| 1350 | /// |
| 1351 | /// \brief Check that the given undirected graph is tree. |
| 1352 | /// |
| 1353 | /// Check that the given undirected graph is tree. |
| 1354 | /// \param graph The undirected graph. |
| 1355 | /// \return %True when the graph is acyclic and connected. |
| 1356 | template <typename Graph> |
| 1357 | bool tree(const Graph& graph) { |
| 1358 | checkConcept<concepts::Graph, Graph>(); |
| 1359 | typedef typename Graph::Node Node; |
| 1360 | typedef typename Graph::NodeIt NodeIt; |
| 1361 | typedef typename Graph::Arc Arc; |
| 1362 | Dfs<Graph> dfs(graph); |
| 1363 | dfs.init(); |
| 1364 | dfs.addSource(NodeIt(graph)); |
| 1365 | while (!dfs.emptyQueue()) { |
| 1366 | Arc edge = dfs.nextArc(); |
| 1367 | Node source = graph.source(edge); |
| 1368 | Node target = graph.target(edge); |
| 1369 | if (dfs.reached(target) && |
| 1370 | dfs.predArc(source) != graph.oppositeArc(edge)) { |
| 1371 | return false; |
| 1372 | } |
| 1373 | dfs.processNextArc(); |
| 1374 | } |
| 1375 | for (NodeIt it(graph); it != INVALID; ++it) { |
| 1376 | if (!dfs.reached(it)) { |
| 1377 | return false; |
| 1378 | } |
| 1379 | } |
| 1380 | return true; |
| 1381 | } |
| 1382 | |
| 1383 | namespace _topology_bits { |
| 1384 | |
| 1385 | template <typename Digraph> |
| 1386 | class BipartiteVisitor : public BfsVisitor<Digraph> { |
| 1387 | public: |
| 1388 | typedef typename Digraph::Arc Arc; |
| 1389 | typedef typename Digraph::Node Node; |
| 1390 | |
| 1391 | BipartiteVisitor(const Digraph& graph, bool& bipartite) |
| 1392 | : _graph(graph), _part(graph), _bipartite(bipartite) {} |
| 1393 | |
| 1394 | void start(const Node& node) { |
| 1395 | _part[node] = true; |
| 1396 | } |
| 1397 | void discover(const Arc& edge) { |
| 1398 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1399 | } |
| 1400 | void examine(const Arc& edge) { |
| 1401 | _bipartite = _bipartite && |
| 1402 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1403 | } |
| 1404 | |
| 1405 | private: |
| 1406 | |
| 1407 | const Digraph& _graph; |
| 1408 | typename Digraph::template NodeMap<bool> _part; |
| 1409 | bool& _bipartite; |
| 1410 | }; |
| 1411 | |
| 1412 | template <typename Digraph, typename PartMap> |
| 1413 | class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
| 1414 | public: |
| 1415 | typedef typename Digraph::Arc Arc; |
| 1416 | typedef typename Digraph::Node Node; |
| 1417 | |
| 1418 | BipartitePartitionsVisitor(const Digraph& graph, |
| 1419 | PartMap& part, bool& bipartite) |
| 1420 | : _graph(graph), _part(part), _bipartite(bipartite) {} |
| 1421 | |
| 1422 | void start(const Node& node) { |
| 1423 | _part.set(node, true); |
| 1424 | } |
| 1425 | void discover(const Arc& edge) { |
| 1426 | _part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1427 | } |
| 1428 | void examine(const Arc& edge) { |
| 1429 | _bipartite = _bipartite && |
| 1430 | _part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1431 | } |
| 1432 | |
| 1433 | private: |
| 1434 | |
| 1435 | const Digraph& _graph; |
| 1436 | PartMap& _part; |
| 1437 | bool& _bipartite; |
| 1438 | }; |
| 1439 | } |
| 1440 | |
| 1441 | /// \ingroup connectivity |
| 1442 | /// |
| 1443 | /// \brief Check if the given undirected graph is bipartite or not |
| 1444 | /// |
| 1445 | /// The function checks if the given undirected \c graph graph is bipartite |
| 1446 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
| 1447 | /// \param graph The undirected graph. |
| 1448 | /// \return %True if \c graph is bipartite, %false otherwise. |
| 1449 | /// \sa bipartitePartitions |
| 1450 | template<typename Graph> |
| 1451 | inline bool bipartite(const Graph &graph){ |
| 1452 | using namespace _topology_bits; |
| 1453 | |
| 1454 | checkConcept<concepts::Graph, Graph>(); |
| 1455 | |
| 1456 | typedef typename Graph::NodeIt NodeIt; |
| 1457 | typedef typename Graph::ArcIt ArcIt; |
| 1458 | |
| 1459 | bool bipartite = true; |
| 1460 | |
| 1461 | BipartiteVisitor<Graph> |
| 1462 | visitor(graph, bipartite); |
| 1463 | BfsVisit<Graph, BipartiteVisitor<Graph> > |
| 1464 | bfs(graph, visitor); |
| 1465 | bfs.init(); |
| 1466 | for(NodeIt it(graph); it != INVALID; ++it) { |
| 1467 | if(!bfs.reached(it)){ |
| 1468 | bfs.addSource(it); |
| 1469 | while (!bfs.emptyQueue()) { |
| 1470 | bfs.processNextNode(); |
| 1471 | if (!bipartite) return false; |
| 1472 | } |
| 1473 | } |
| 1474 | } |
| 1475 | return true; |
| 1476 | } |
| 1477 | |
| 1478 | /// \ingroup connectivity |
| 1479 | /// |
| 1480 | /// \brief Check if the given undirected graph is bipartite or not |
| 1481 | /// |
| 1482 | /// The function checks if the given undirected graph is bipartite |
| 1483 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
| 1484 | /// During the execution, the \c partMap will be set as the two |
| 1485 | /// partitions of the graph. |
| 1486 | /// \param graph The undirected graph. |
| 1487 | /// \retval partMap A writable bool map of nodes. It will be set as the |
| 1488 | /// two partitions of the graph. |
| 1489 | /// \return %True if \c graph is bipartite, %false otherwise. |
| 1490 | template<typename Graph, typename NodeMap> |
| 1491 | inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
| 1492 | using namespace _topology_bits; |
| 1493 | |
| 1494 | checkConcept<concepts::Graph, Graph>(); |
| 1495 | |
| 1496 | typedef typename Graph::Node Node; |
| 1497 | typedef typename Graph::NodeIt NodeIt; |
| 1498 | typedef typename Graph::ArcIt ArcIt; |
| 1499 | |
| 1500 | bool bipartite = true; |
| 1501 | |
| 1502 | BipartitePartitionsVisitor<Graph, NodeMap> |
| 1503 | visitor(graph, partMap, bipartite); |
| 1504 | BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
| 1505 | bfs(graph, visitor); |
| 1506 | bfs.init(); |
| 1507 | for(NodeIt it(graph); it != INVALID; ++it) { |
| 1508 | if(!bfs.reached(it)){ |
| 1509 | bfs.addSource(it); |
| 1510 | while (!bfs.emptyQueue()) { |
| 1511 | bfs.processNextNode(); |
| 1512 | if (!bipartite) return false; |
| 1513 | } |
| 1514 | } |
| 1515 | } |
| 1516 | return true; |
| 1517 | } |
| 1518 | |
| 1519 | /// \brief Returns true when there are not loop edges in the graph. |
| 1520 | /// |
| 1521 | /// Returns true when there are not loop edges in the graph. |
| 1522 | template <typename Digraph> |
| 1523 | bool loopFree(const Digraph& graph) { |
| 1524 | for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) { |
| 1525 | if (graph.source(it) == graph.target(it)) return false; |
| 1526 | } |
| 1527 | return true; |
| 1528 | } |
| 1529 | |
| 1530 | /// \brief Returns true when there are not parallel edges in the graph. |
| 1531 | /// |
| 1532 | /// Returns true when there are not parallel edges in the graph. |
| 1533 | template <typename Digraph> |
| 1534 | bool parallelFree(const Digraph& graph) { |
| 1535 | typename Digraph::template NodeMap<bool> reached(graph, false); |
| 1536 | for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) { |
| 1537 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| 1538 | if (reached[graph.target(e)]) return false; |
| 1539 | reached.set(graph.target(e), true); |
| 1540 | } |
| 1541 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| 1542 | reached.set(graph.target(e), false); |
| 1543 | } |
| 1544 | } |
| 1545 | return true; |
| 1546 | } |
| 1547 | |
| 1548 | /// \brief Returns true when there are not loop edges and parallel |
| 1549 | /// edges in the graph. |
| 1550 | /// |
| 1551 | /// Returns true when there are not loop edges and parallel edges in |
| 1552 | /// the graph. |
| 1553 | template <typename Digraph> |
| 1554 | bool simpleDigraph(const Digraph& graph) { |
| 1555 | typename Digraph::template NodeMap<bool> reached(graph, false); |
| 1556 | for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) { |
| 1557 | reached.set(n, true); |
| 1558 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| 1559 | if (reached[graph.target(e)]) return false; |
| 1560 | reached.set(graph.target(e), true); |
| 1561 | } |
| 1562 | for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) { |
| 1563 | reached.set(graph.target(e), false); |
| 1564 | } |
| 1565 | reached.set(n, false); |
| 1566 | } |
| 1567 | return true; |
| 1568 | } |
| 1569 | |
| 1570 | } //namespace lemon |
| 1571 | |
| 1572 | #endif //LEMON_TOPOLOGY_H |