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ABSTRACT 

Column generation has proved to be an effective technique for solving the linear 
programming relaxation of huge set covering or set partitioning problems, and col­
umn generation approaches have led to state-of-the-art so-called branch-and-price 
algorithms for various archetypical combinatorial optimization problems. Usually, 
if Lagrangean relaxation is embedded at all in a column generation approach, 
then the Lagrangean bound serves only as a tool to fathom nodes of the branch­
and-price tree. We show that the Lagrangean bound can be exploited in more 
sophisticated and effective ways for two purposes: to speed up convergence of the 
column generation algorithm and to speed up the pricing algorithm. 

Our vehicle to demonstrate the effectiveness of teaming up column genera­
tion with Lagrangean relaxation is an archetypical single-machine common due 
date scheduling problem. Our comprehensive computational study shows that the 
combined algorithm is by far superior to two existing purely column generation 
algorithms: it solves instances with up to 125 jobs to optimality, while purely 
column generation algorithm can solve instances with up to only 60 jobs. 

1980 Mathematics Subject Classification (Revision 1991): 90B35. 
Keywords and Phrases: column generation, Lagrangean relaxation, set covering, 
linear programming, earliness-tardiness scheduling, common due date. 



1 Introd uction 

For many an NP-hard combinatorial minimization (maximization) problem, 
a remarkably strong lower (upper) bound on the optimal solution value can be 
computed by formulating the problem as an integer linear program (usually 
a set covering or set partitioning problem) with a huge number of variables 
and then solving the linear programming relaxation by a column genera­
tion method. This approach has led to state-of-the-art branch-and-bound 
(also called branch-and-price) algorithms for such archetypical combinato­
rial optimization problems as the vehicle routing problem with time win­
dows (Desrochers et at., 1992; Desrosiers et at., 1995), the generalized assign­
ment problem (Savelsbergh, 1997), the parallel-machine scheduling problem 
(Van den Akker et al., 1995; Chen and Powell, 1995) and the graph color­
ing problem (Mehrotra and Trick, 1997) as well as for various real-life prob­
lems including airline crew scheduling, bus driver scheduling, and production 
scheduling (see for a selection of references, Soumis (1997)). 

The idea behind column generation is to solve the linear programming 
relaxation on only a small subset of all the variables. A so-called pricing 
algorithm verifies global optimality of the solution for the linear program­
ming relaxation of the minimization (maximization) problem by checking if 
there exist one or more variables that were left out of the linear program 
with negative (positive) reduced cost. If there is one or more, then some of 
them, depending on the design and the implementation of the algorithm, are 
added to the linear program, since they may possibly improve the solution 
value, and the procedure is repeated. If there is none, then the current so­
lution is optimal for the linear programming relaxation. For an introduction 
to the ideas and fundamentals behind column generation and branch-and­
bound algorithms based on this concept, we refer to Barnhart et al. (1994), 
Vanderbeck (1998), and Freling et al. (1998). 

In theory, the linear programming bound obtained by column generation 
can alternatively be computed by means of Lagrangean relaxation. In fact, 
the basic difference between column generation and Lagrangean relaxation, 
which are both iterative methods, lies in the way the dual multipliers are 
adjusted in every iteration. The usual methods for updating the dual (or 
Lagrangean) multipliers, such as the subgradient method and the bundle 
method, are relatively easy to implement and require hardly no computer 
storage. There are serious practical problems with their convergence behav-
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ior, however: they are quite slow, with a lot of zig-zagging in the beginning; 
what is more, they cannot be guaranteed to converge to the optimal solution. 
In general, column generation has much better convergence properties than 
Lagrangean relaxation. Now, with the recent availability of efficient simplex 
codes with easy to implement column generation capabilities and computers 
with sufficient computer memory, it seems as if these properties can finally 
be exploited to the max and it looks as if column generation has become the 
preferred method. 

Although column generation is faster and shows betters convergence prop­
erties, one drawback still stands: it does not give a lower (upper) bound on 
the optimal solution value till complete convergence. In contrast, Lagrangean 
relaxation gives a lower (upper) bound in each iteration. 

It is well known that Lagrangean relaxation can complement column gen­
eration method very nicely in that it can be used in each iteration of the 
column generation method to compute a lower (upper) bound in only little 
additional time; see for instance Vanderbeck and Wolsey (1996). The use 
of the lower (upper) bound, however, is primarily restricted to comparing 
it to an upper (lower) bound on the optimal solution value for one of two 
purposes: (i) to see if a node in the branch-and-price tree can be fathomed; 
or (ii) to see if the column generation algorithm has converged to the optimal 
solution value. For the first purpose, the speedup can be considerable; for 
the second, the speedup is usually only modest. 

The message of this paper is there are other, more effective ways to ex­
ploit Lagrangean relaxation within the framework of a column generation 
algorithm. We not only show that there are more ways to alleviate the 
so-called tailing-off effect, that is, to speed up convergence of the column 
generation method, but also that it can be used to speed up the pricing 
algorithms. 

Our vehicle to demonstrate the effectiveness of this combination of column 
generation and Lagrangean relaxation is a standard single-machine earliness­
tardiness problem with asymmetric job weights and a large common due date. 
Van den Akker et al. (1996) and Chen and Powell (1997) have presented pure 
column generation algorithms for this problem that can solve instances with 
up to 60 jobs to optimality. In this paper, we present a combined column 
generation and Lagrangean relaxation algorithm that solves instances with 
up to 125 jobs to optimality. 

The plan of this paper is as follows. In Section 2, we present a formal 
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description of the problem under study, review the relevant literature, and 
point out the main characteristics of the two existing column generation al­
gorithms. In Section 3, we formulate the earliness-tardiness problem as a set 
covering problem with two additional constraints and an exponential num­
ber of variables, present the column generation algorithm to solve its linear 
programming relaxation (Section 3.1), analyze its Lagrangean problem (Sec­
tion 3.2), and point out how column generation and Lagrangean relaxation 
can be combined to our computational advantage (Section 3.3). In Section 4, 
we present our computational results for four classes of randomly generated 
instances. Surprisingly, the column generation method renders an optimal 
integral solution for each problem instance. Section 5 concludes the paper 
with some remarks on the general applicability of a combination of column 
generation and Lagrangean relaxation. We further sketch a branch-and-price 
algorithm for the single-machine earliness-tardiness problem under study that 
can be used if the column generation algorithm does not terminate with an 
integral solution. 

2 Problem description 

We consider the following single-machine scheduling problem. A set J = 

{J1 , ... , I n } of n independent jobs has to be scheduled on a single machine 
that is continuously available from time zero onwards. The machine can 
handle at most one job at a time. Job Jj (j = 1, ... ,n) requires a positive 
integral uninterrupted processing time Pj and should ideally be completed 
exactly on its due date d, which is common to all jobs. We say that this 
common due date is large, if d 2: 'L"]=1 Pj; otherwise, we call it small. In 
case of a large common due date, the constraint that the machine is not 
available before time zero is redundant. A schedule specifies for each job Jj 

a completion time Cj such that the jobs do not overlap in their execution. 
The order in which the machine processes the jobs is called the job sequence. 
For a given schedule, the earliness of Jj is defined as E j = max{O, d - Cj} 
and its tardiness as T j = max{O, C j - d}. Accordingly, Jj is called early, 
just-in-time, or tardy if C j < d, C j = d, or C j > d, respectively. The cost of 
a schedule (J is the sum of weighted job earliness and tardiness, that is, 

n 

f((J) = L [ajEj + /3jTj ] , 

j=l 
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where O'.j and {3j are given positive weights. The problem is to find a schedule 
with minimum cost. 

We assume that the common due date is large. We assert that the anal­
ysis of the problem with a small common due date and the design of the 
algorithms for its solution are pretty much similar to those for the problem 
with a large common due date; see also Van den Akker et al. (1996). We 
can take advantage of three well-known properties that characterize a class 
of optimal solutions (Quaddus, 1987; Baker and Scudder, 1989): 

- There is no idle time between the execution of the jobs; 

One of the jobs completes exactly on time d; 

- The jobs completed at or before d are in order of nondecreasing O'.j!Pj 
ratio, and the jobs started at or after d are in nonincreasing {3j/Pj ratio. 

Schedules that possess these three properties are called V-shaped. Note that 
any V-shaped schedule consists of two parts: the early schedule, consisting of 
the jobs completed before or on time d; and the tardy schedule, consisting of 
the jobs completed after time d. We call these two schedules complimentary. 
The characterization implies that the problem is a partitioning problem: we 
need to select the jobs that are completed at or before d, and the jobs that 
are completed after d. Furthermore, due to these three properties, the value 
of the common due date is irrelevant, provided that it is large. 

The problem is arguably the most vexing earliness-tardiness scheduling 
problem remaining; for an overview of such problems, we refer to Baker and 
Scudder (1990). The problem is NP-hard in the ordinary sense, but it de­
fies the type of pseudopolynomial algorithm that is so common in earliness­
tardiness scheduling it is therefore still an open question whether the 
problem is solvable in pseudopolynomial time or NP-hard in the strong sense. 
The NP-hardness of the problem follows from the NP-hardness of its sym­
metric counterpart where O'.j = {3j = Wj for each job Jj (j 1, ... ,n) (Hall 
and Posner, 1991). Hall and Posner also present an O(n I:.J=l Pj) time and 
space dynamic programming algorithm, thereby establishing the computa­
tional complexity of the symmetric problem. This algorithm proceeds by 
adding the jobs in order of nondecreasing Wj/Pi ratio; hence, the dynamic 
programming algorithm can be applied to the asymmetric case only if the 
ratios O'.j/Pj and {3j/Pj induce the same job sequence. Furthermore, till col­
umn generation algorithms were developed for its solution, the problem was 
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also very hard in practice as well, since it seemed to be impossible to com­
pute strong lower bounds (Hall and Sriskandarajah, 1990; De, Ghosh, and 
\Vells, 1994). De et al. formulate the problem as a quadratic 0-1 integer 
programming problem, which they solve by the branch-and-bound algorithm 
proposed by Pardalos and Rodgers (1990). Their algorithm solves randomly 
generated instances with up to 30 jobs without much effort, but it may take 
more than 300 seconds to solve an instance with n = 40 on a VAX 4000-300 
machine. De et al. present also a specific randomized local search algorithm, 
a so-called GRASP algorithm, which has empirically only a small erroneous 
behavior. 

Independently, Van den Akker et al. (1996) and Chen and Powell (1997) 
have presented a column generation algorithm for this problem. Although 
both algorithms can solve instances with up to 60 jobs to optimality, there are 
some differences. Chen and Powell present in fact a column generation algo­
rithm for the general m-machine problem (m 2: 2) and use an O(n2 '2-:,rJ=lPj) 
time pricing algorithm. Focusing on the single-machine case only, Van den 
Akker et al. are able to present a simpler algorithm, which uses a faster 
O(n 2:,'1=1 Pj} time pricing algorithm. The computational results differ as 
well: while Van de Akker et al. report that the solution to the linear pro­
gramminls relaxation was integral for all their randomly generated instances, 
Chen and Powell report that there is a very small integrality gap and that 
on average just a few branch-and-bound nodes were necessary to close the 
gap. 

3 Lower bound computing 

We formulate the large common due date problem as a set covering problem 
with an exponential number of binary variables, n covering constraints, and 
two addi1;ional side-constraints. Our formulation reflects that we search for 
an optimal V-shaped schedule. 

Let £ and T be the set of all early and tardy schedules, respectively, 
where T includes the empty tardy schedule. Each feasible schedule s E £ 
is characterized by a 0-1 vector as (al s," . 1 an,s), where ajs = 1 if Jj is 
included in s (j = 1, ... , n). In a similar fashion, each feasible schedule 
sET is characterized by a 0-1 vector as = (al S ,"" an,s), where ajs 
1 if Jj is included in s (j = 1, ... 1 n). Given any as E T or £, we can 
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recover the corresponding schedule s and its cost, v,rhich we denote by cs , in 
a straightforward fashion. 

Let now Xs be a 0-1 variable that takes the value 1 if schedule s is selected 
and the value 0, otherwise. The problem, which we refer to as problem (P), 
is then to find the value z*, which is the minimum of 

L CsXs + L Csxs 
sEE: sET 

subject to 

L ajsXs + L ajsXs 2:: 1, for j = 1, ... , n, (1) 
sEE: sET 

(2) 

(3) 

Xs E {O, I}, for each s E £ and sET. (4) 

Conditions (1) enforce that each job is executed at least once. Condi­
tions (2) and (3) make sure that no more than one early schedule and one 
tardy schedule are selected. Conditions (4) are the integrality conditions. Of 
course, there exists an optimal solution in which conditions (1)-(3) will hold 
with equality in any optimal solution, since all cost coefficients are positive. 

We cannot realistically hope that this problem is solvable in time poly­
nomial in n, since the underlying problem is NP-hard. Furthermore, an 
explicit formulation of even a modest problem instance is impossible because 
of the huge number of schedules involved. We are therefore interested in 
computing a strong (mathematical programming) lower bound on the opti­
mal solution value. There are two alternative methods available that can 
handle an exponential number of variables: column generation, which we 
discuss in Section 3.1, and Lagrangean relaxation, which we discuss in Sec­
tion 3.2. Column generation solves the linear programming relaxation of the 
above formulation, and as we will see, Lagrangean relaxation gives in theory 
the same linear programming bound. However, we get the best results if we 
combine the two - how this can be done is discussed in Section 3.3. 
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3.1 Column generation 

The linear programming relaxation of the integer linear programming prob­
lem is obtained by replacing conditions (4) by the conditions 

Xs ~: 0, for each s E £ and sET, (5) 

as conditions (2) and (3) prohibit values greater than l. 
In each iteration of the column generation procedure, we take only a 

feasible subset of the schedules, say, S, into consideration, solve the linear 
programming relaxation, and add new schedules if needed. V-Ie call a subset of 
schedules feasible if they contain at least one feasible solution to problem (P). 
A feasible subset can easily be generated by some iterative local improvement 
heuristic, as we will see in Section 4. From the theory of linear programming, 
we know that adding a schedule 8 with corresponding variable Xs can decrease 
the value of the linear programming solution only if s has negative reduced 
cost. The reduced cost c~ of any s E £ with vector as is defined as 

n 

c~ =~ Cs - L ajsAj + An+b 
j=l 

where Aj 2: ° (j = 1, ... , n) is the value of the dual variable corresponding to 
the jth of the constraints (1) and An+! 2: 0 is the value of the dual variable 
corresponding to condition (2). For any sET, the reduced cost c~ is defined 
as 

n 

c~ == Cs L ajsAj + An+2' 
j=l 

where An+2 2: 0 is the value of the dual variable corresponding to condi­
tion (3). All these dual variables follow from the linear programming solu­
tion. 

We want to solve the pricing problem of finding a schedule s with minimal 
c~ value; if this minimum is nonnegative, then we know that the value of 
the linear programming solution will not decrease by taking the remaining 
schedules into consideration, which implies that we have found the optimal 
solution of the linear programming relaxation. We solve the pricing problem 
by finding the early and tardy schedule with minimum reduced cost among 
all early and tardy schedules, respectively. To that end, we use two pricing 
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algorithms: one to find an early schedule with minimum reduced cost; and 
one to find a tardy schedule with minimum reduced cost. The latter is 
essentially the same as the pricing algorithm that we used for the problem 
of minimizing total weighted completion time on a set of identical parallel 
machines; see Van den Akker et al. (1995). The pricing algorithm to find an 
early schedule with minimum reduced cost is very similar; we work out the 
details of this algorithm below. 

In case of an early schedule, the pricing problem reduces to minimizing 
Cs - "LJ=l ajsAj over all binary vectors as; after all, An+1 is a constant for given 
A. Suppose that the jobs have been reindexed in order of nonincreasing o.j / Pj 
ratios, that is, 

0.1 o.n - > '''>-. 
PI - - Pn 

Then for any job Jj in the early schedule s with vector as, we have that 

j-l 

E j = d Cj = LaisPi. 
i=l 

As s is an early schedule, we have that Cs = "LJ=l o.jajsEj, from which we 
obtain that 

n j-l n 

c~ - L o.jajs L aisPi - L ajsAj + An+l 
j=l i=l j=l 

t, [<>j % ai,pi "}j, + An +1. 

Hence, if "Lt:i aisPi = t, then including Jj in the early schedule (or putting 
ajs 1) affects c~ by o.jt - Aj. 

We present a pseudo-polynomial dynamic programming algorithm to solve 
the pricing problem. For any given A ~ 0, let F>.(j, t) denote the minimum re­
duced cost for all early schedules that consist of jobs from the set {J1 , ... , Jj } 

in which the first job in the schedule starts at time d t. The initialization 
1S 

{
A if J' 0 and t F>.(j, t) = n+1, 

00, otherwise. 
0, 
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The recursion is then, for j 1, ... ,n, t = 0, ... , "L,{=l Pi 

F>.(j, t) = min{ F>.(j - 1, t), F>.(j - 1, t - Pj) + aj(t Pj) - Aj }, (6) 

where the first and second term reflect the decision of leaving Jj out of sand 
adding Jj to s, respectively. The early schedule with minimum reduced cost 
is the one corresponding to 

min F>.(n, t), 
O~t~P 

where p= "L,f=l Pi- Note that any value F>..(n, t) < 0 corresponds to an 
early schedule with negative reduced cost. This raises the issue whether just 
the early schedule with minimum negative reduced cost, a small number of 
early schedules with most negative reduced cost, or all early schedules with 
negative reduced cost should be added to the set S. This implementation 
issue is discussed in Section 4.1. 

We construct the pricing algorithm for generating tardy schedules in a 
similar fashion. Let G>.(j, t) denote the minimum reduced cost for all tardy 
schedules that consist of jobs from the set {J1 , ... , Jj } in which the last job 
completes at time t. As our initialization, we have 

G (,' t) = {An+2' if j 0 and t = 0, 
>. }, 00, otherwise, 

The values G>.(j, t) (j 1, . _ . , n; t = 0, ... , 'L1=1 Pi)' are computed through 
the recurrence relation 

(7) 

and we determine 

to find the tardy schedule with minimum reduced cost from among all tardy 
schedules. Again, each value G>..(n, t) < 0 corresponds to a tardy schedule 
with negative reduced cost. The issue of which tardy schedules with negative 
reduced cost to add to S is addressed in Section 4.1. 

Note that both pricing algorithms run in O(n 'L'j=1 Pj) time and space. 
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3.2 Lagrangean relaxation 

Consider now the Lagrangean problem of problem (P) obtained by dual­
izing constraints (1) with a given vector of Lagrangean multipliers P = 

(PI,.'" Pn) ~ 0; we refer to this problem as problem (Lp). For any given p, 
the Lagrangean problem (Lp) is to find the value L(p), which is the minimum 
of 

n n n 

L(cs - LPjajs)xs + L(cs - LPjajs)xs + LPj 
sEE j=1 sET j=1 j=1 

subject to conditions (2), (3), and (4). From standard Lagrangean theory 
(see for instance Fisher (1981)), we know that L(p) is a lower bound on the 
optimum solution value for any P 2: O. 

Since Ej=1 Pj is a constant, the Lagrangean problem decomposes into 
two independent subproblems: one problem of finding an early schedule with 
minimum Cs Ej=1 pjajs; and one problem of finding a tardy schedule with 
mInImUm Cs Ej=1 Pjajs. The key observation is that both these problems 
are solved to optimality by using the two pricing algorithms presented in 
the previous section; we just use Pj instead of Aj for j = 1, ... , n and put 
An+! = 0 and An+2 =:: O. Accordingly, we have the following result. 

Theorem 1 For any P (PI,' .. ,Pn) 2: 0 and corresponding pI 
(Ph . .. ,Pn, 0, 0), we have that 

n 

L(p) = min Fpl (n, t) + min Gpl(n, t) + L Pj' 
O~t~P 09~P j=1 

o 

In fact, we can strengthen the lower bound L(p) in the following way. 
Note that we can add to the Lagrangean problem the constraint 

n n n 

LLajsxs + L Lajsxs = LPj, (8) 
sEE j=1 sET j=1 j=1 

which simply stipulates that the length of the early schedule plus the length 
of the tardy schedule should be exactly equal to the sum of the process­
ing times. Clearly, this constraint is redundant for problem (P). And while 
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remarkably enough it is also redundant for the linear programming relax­
ation of (P), it is not redundant for the Lagrangean problem. What is more, 
this additional constraint does not complicate the solution algorithm for the 
Lagrangean problem. Let L'(p) be the minimum solution value of the La­
grange an problem (Lp) with the extra constraint (8). Then we have that 

(9) 

Of course, we can try and solve the Lagrangean dual problem 

max{L'(p) I p ~ O} 

to find the best possible Lagrangean lower bound, which is equal the to the 
linear programming bound in this case. In theory, this problem can be solved 
to optimality by the subgradient method or the bundle method, which are 
iterative procedures for updating the Lagrangean multipliers. 

Accordingly, the basic difference between column generation and La­
grangean relaxation lies in the way the dual or Lagrangean multipliers are 
adjusted. The advantages of using Lagrangean relaxation to solve the linear 
programming relaxation are that (i) it is very easy to implement there 
is no need to use linear programming to compute the next set of multipli­
ers; (ii) it gives a lower bound in each iteration, while the column generation 
method gives a lower bound only upon convergence; (iii) no solutions need be 
stored. However, column generation has much better convergence properties. 
The main handicap of the subgradient method is that in practice it works as 
a non-polynomial approximation algorithm, since the theoretical conditions 
for convergence are so stringent that they cannot be observed in practice. 
Furthermore, it is typically impossible to establish whether the subgradient 
method has converged to an optimal vector of Lagrangean multipliers. This 
handicap is particularly inconvenient in our application, since in our earlier 
work on this problem we experienced that the linear programming relax­
ation was tight for all our randomly generated instances (Van den Akker 
et al., 1996). In this respect, we insist on solving the linear programming 
relaxation to optimality. 

A much more rewarding venue is to combine column generation and La­
grangean relaxation, as we show in the next subsection. In this way, we 
can still compute the best lower bound possible, compute lower bounds in 
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each iteration, and use these lower bounds to control the size of the linear 
programming problem, to alleviate the tailing-off effect, and to speed up the 
pricing algorithms. 

3.3 Combining column generation and Lagrangean re­
laxation 

The main handicap of using column generation is that we have no valid lower 
bound on the optimal solution value until convergence, that is, until there are 
provably no columns with negative reduced cost any more. For problems with 
a severe tailing-off effect and much degeneracy, this is very inconvenient. The 
advantage of Lagrangean relaxation, however, is that we have a lower bound 
in each step of the column generation algorithm. In this section, we show 
how to combine them to both alleviate the tailing-off effect and speed up the 
pricing algorithms. We do not try to solve the Lagrangean dual problem; 
we simply compute the strengthened Lagrangean lower bound for the linear 
programming dual variables Aj (j 1, ... , n) we denote this bound by 
L'(A). We use the Lagrangean lower bound in four different ways to speed 
up the column generation algorithm. We discuss these speedups for the root 
node of the brallch-and-price algorithm; the speedups for the other nodes 
can easily be derived from this discussion. The Lagrangean lower bound is 
used to try to 

1. Prove optimality of the current solution 

Clearly, if we have that L' (A) > U B-1 (recall that the outcome values 
are integral) for some A ~ 0, where U B is the solution value of a 
feasible solution for the original scheduling problem, then we need no 
further bother about convergence of the column generation algorithm 

we have then found a provably optimal solution for the scheduling 
problem. 

As mentioned earlier, this application of the Lagrangean lower bound 
in a colum generation algorithm is known (see for instance Vanderbeck 
and Wolsey (1996)), and the effect is only modest in the root node, 
since it applies only in the very tail of the convergence process. In the 
other nodes, however, this application may be very effective; see for 
instance Gademann and Van de Velde (1998). 
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2. Fix variables 

From standard linear programming theory, we know that if c~ > U B -
L'(.>..) -1, then Xs = 0 in any solution with solution value less than U B, 
if such a solution exists. Accordingly, we can remove with impunity all 
columns s from the column pool S for which this condition holds. 

The value of this type of variable fixing for controlling the growth of 
the column pool S is marginal. Vve could also have used one of the 
many rule-of-thumb column management techniques (see for instance 
Freling (1997)), such as the one that consistently removes all columns 
s for which c~ is larger then some heuristically set positive threshold 
value 6. 

Ey the same token, we know that if c~ < L' (A) + 1 U Band Xs = 1 in 
the current linear programming solution, then Xs = 1 in any solution 
with solution value less than U B, if such a solution exists. Accord­
ingly, if this is the case, then we have identified an optimal solution 
to the scheduling problem: column s together with its complimentary 
schedule then constitutes an optimal schedule. 

Anticipating on our computational results, we found that this type of 
variable fixing seldom appeared in practice. 

3. Re:;trict the range of the state variable t in the dynamic programming 
rec'ursion for the pricing algorithms 

If we have for some t and for some A 2:: 0 that 

n 

F>.(n, t) + G>.(n, P - t) + LAj > UB -1, 
j=1 

then we may conclude that there is no solution with the length of the 
early schedule equal to t (and hence the length of the tardy schedule 
equal to P t) that is better than our best schedule in hand. If we now 
can derive that this holds for all t 2:: to, for some to as small as possible, 
then we can speed up the pricing algorithms by restricting the range of 
the state variable t, without loosing any optimal solution to the pricing 
problem. 

This is a most effective trick to speed up the pricing algorithm. Note 
that the speed up can be no more than a factor two. 
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4. Fix jobs to either the early or tardy set. 

Fixing jobs is done by the following type of sensitivity analysis. Con­
sider any job Jk and let zk(T)* be the optimal solution value for our 
earliness-tardiness problem subject to the condition that job Jk is tardy. 
For any ,X 2:: 0, it is straightforward to compute a lower bound on zk(T)* 
by slight adjustments of the two pricing algorithms. If we require that 
Jk is tardy, then we compute F>..(k, t) as 

k 

F>..(k, t) F>..(k 1, t), for t = 0, ... , LPi 
i=l 

and G>..(k, t) as 

k 

G>..(k, t) G>..(k - 1, t - Pk) + f3kt - 'xk, for t = 0, ... , LPi. 
i=l 

Hence, if zk(T)* > UB -1, then we know that Jk must be early in any 
optimal schedule, if the best schedule found thus far is not optimal. 

In a similar fashion, of course, we can test if Jk can be early. 

The purpose of this test is twofold: to restrict the size of the column 
pool, and more importantly, to speed up the regular pricing algorithm. 
To see this, suppose for instance that we have established that some 
Jk must be tardy. First of all, we can then remove from the column 
pool all early schedules that contain Jk as well as all tardy schedules 
that do not contain Jk. Furthermore, the consequence for the tardy 
pricing algorithm is that the option of scheduling Jk early need no 
longer be evaluated. The consequence for the early pricing algorithm 
is even more drastic and time-saving: Jk need no longer be part of the 
recursion at all. 

This type of sensitivity analysis is quite time-consuming; it seems 
therefore prudent to perform it for the first time only when the gap 
(UB - L'('x) - 1) has become relatively small, and after the first time, 
to perform it only once every so many iterations. 
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4 Computational results 

In this section, we report on our computational experience with our combined 
column generation and Lagrangean relaxation algorithm for randomly gen­
erated instances; in the remainder, we refer to it as the combined algorithm. 
We first discuss the implementation issues, then give a sketchy description 
of our implementation of the combined algorithm, and finally report on and 
analyze our computational results. 

4.1 Irnplementation issues 

The algorithms were coded in the computer language C, and the experiments 
were conducted on an HP9000/71O Unix machine. We used the package 
CPLEX (CPLEX Optimization, 1990) to solve the linear programs. 

The main implementation issues involved are: 

- The design of a heuristic to generate the initial set 5 of early and tardy 
schedules; 

The size of the initial set 5, that is, the number of columns to be 
generated by the heuristic; 

- The columns to add to the linear program per iteration. 

The first implementation issue is the design of a heuristic for generating 
initial columns to compute the initial dual variables with which we start the 
column generation method. We use a simple iterative improvement proce­
dure for this purpose, which works as follows. First, we generate a feasible 
solution by deciding randomly whether a job is scheduled early or tardy. 
Then, we compute the corresponding V-shaped schedule and we search the 
neighborhood of the current schedule for a better V-shaped schedule. The 
neighborhood of a V-shaped schedule consists of all V-shaped schedules that 
can be obtained by three types of changing operations: moving a tardy job to 
the early schedule; moving an early job to the tardy schedule; and swapping 
an early and a tardy job. As soon as we find a better schedule in the current 
neighborhood, we adopt it as the new schedule. This process is repeated and 
terminates when no further improvement can be found. 

The second issue is the number of initial solutions to be generated by the 
heuristic. Note that multiple initial solutions can be obtained by repetitive 
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use of the heuristic described above. In case of a small number, the initial 
dual variables may be a long shot away from the optimal dual variables; in 
case of a large number, the size of the linear programs may outweigh the ben­
efit of having better initial dual variables. Our computational experiments 
indicated that running the heuristic between 20 and 50 times, depending on 
the number of jobs in the instance, each time with a different starting solu­
tion, was a fairly robust choice. We have not tried to finetune this number 
further with respect to size or any other characteristic of an instance. 

The third issue is how many and which schedules (or columns) to add 
to the set S in each iteration. The dilemma we are facing is that the more 
schedules we add per iteration, the fewer linear programs we (probably) 
need to solve - which is good; but the more schedules we add per iteration, 
the bigger the linear programs become - which is bad. In the previous 
section, we noted that each value Fn(t) < 0 and Gn(t) < 0 corresponds to 
a column with negative reduced cost. Hence, using the pricing algorithm, 
we can determine as many early and tardy schedules with negative reduced 
cost as there are values t for which Fn(t) < 0 or Gn(t) < 0, at the expense 
of a little extra effort. In our computation results, however, this turned out 
to be not worthwhile. Accordingly, per iteration we add no more than one 
tardy and one early schedule. There is one exception to this rule, however: 
If a schedule with minimum reduced cost together with its complementary 
schedule constitute a better primal solution than the incumbent upper bound, 
then both schedules are added to S. 

This exception also underlines the great importance of the pricing algo­
rithms for finding better and better feasible solutions to the original schedul­
ing problem. Anticipating on the section with our computational results 
for randomly generated instances, the iterative local improvement heuristic 
served its purpose by finding reasonable feasible solutions quickly, but the 
pricing algorithms always found an optimal solution on the fiy. 
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4.2 The combined algorithm 

In this subsection, we give a sketchy description of our implementation of 
the combined algorithm we found this implementation the most robust. 

COMBINED ALGORITHM 

STEP 1. Use the iterative improvement heuristic with between 
20 and 50 different starting solutions to generate the initial set S 
of early and tardy schedules. 

STEP 2. Solve the linear programming relaxation. 

STI~P 3. Run both pricing algorithms to determine the early 
schedule and the tardy schedule with minimum negative reduced 
cost. 

STEP 4. If neither an early, nor a tardy schedule with negative 
reduced cost exists, then go to STEP 8. If such an early sched­
ule exists, then determine its complementary tardy schedule. If 
together they constitute a better feasible solution than we have 
right now, then record the solution and its corresponding solution 
value, say U B, and add both the early schedule and its comple­
mentary tardy schedule to the set S. If they do not form a better 
feaE:ible schedule, then just add the early schedule. The same 
procedure applies to the tardy schedule with minimum negative 
reduced costs, if it exists. 

STEP 5. Compute the Lagrangean lower bound L'()..) and try to 
restrict the range of the state variables of the pricing algorithms. 

STEP 6. Once every n iterations, do the following: first, perform 
a sensitivity analysis to try and fix jobs, if L'()..)/U B > 0.99; 
and second, remove each tardy (early) column s with Cs > UB­
L'(A) 1 or with at least one job that should be early (tardy). 

STEP 7. Return to STEP 2. 

STEP 8. Stop the column generation procedure. We have solved 
the linear programming relaxation to optimality. If L' ()..) > 
UBI, then we have solved the original schedule problem to 
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optimality; if not, then we need to use a branch-and-price algo­
rithm to solve the scheduling problem to optimality. 

Furthermore, note that STEP 4 is also important for finding better feasible 
solutions. 

4.3 Performance of the column generation algorithm 

We tested our algorithm on four classes of randomly generated instances: 

(i) instances with processing times and weights drawn from the uniform 
distribution [1,100]. This concurs with the procedure used by De et al. 
(1994) to generate instances, which was also used by Van den Akker et 
at. (1996) and Chen and Powell (1997). 

(ii) instances with processing times and weights drawn from the uniform 
distribution [1,10]. These instances were also considered by Van den 
Akker et al. (1996) and Chen and Powell (1997). 

(iii) instances where the processing times and the job weights are highly 
correlated. The processing times were drawn from the uniform dis­
tribution [10,100], and each aj and {3j was drawn from the uniform 
distribution [Pj - 5,pj + 5]. In this way, the ratios aj/pj and {3j/Pj are 
all close to 1, which means that the jobs have about the same priority. 

(iv) instances where the processing times and jobs weights are almost iden­
tical. The processing times and weights were drawn from the uniform 
distribution [90,100]. This gives instances where the jobs have about 
the same processing requirement and where furthermore the weight to 
processing time ratios are all close to 1. 

Instance classes (iii) and (iv) contain computationally hard instances, since 
all the weight to processing time ratios are close to each other. For in­
stance classes (i) and (ii), we tested our algorithm on instances with n = 
10,25,50,75,100 and 125 jobs; for instance classes (iii) and (iv), we went no 
further than instances with 100 jobs, since larger instances took on average 
too much time. For each combination of n and instance class we generated 
100 instances. 
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For each value of n and for each instance class, we report on the num­
ber of times (out of 100) that the optimal linear programming solution was 
integral, the average computation time, the maximum computation time, 
the average number of columns generated, the maximum number of columns 
generated, the average number of linear programming problems solved, and 
the maximum number of linear programming problems solved. 

Tables 1-4 summarize our computational results with the column genera­
tion algorithm for the respective instance classes. The headers of the columns 
are: 

n ~ 

OPT 

ACT 
MCT 
ACOL 
MCOL 
ALP 
MLP 

n OPT 
10 100 
25 100 
50 100 
75 100 
100 100 
125 100 

number of jobs; 
number of instances out of 100 for which the linear 
programming solution was integral. 
average computation time in seconds; 
maximum computation time in seconds; 
average number of columns generated; 
maximum number of columns generated; 
average number of linear programs solved; 
maximum number of linear programs solved. 

ACT !vICT ACOL MCOL ALP MLP 
0.24 0.30 27 53 24 32 
2.57 3.80 146 179 92 124 

21.38 37.94 386 668 207 397 
40.19 62.05 645 899 403 572 

183.01 248.91 1058 1778 669 1591 
467.21 882.87 1575 2168 904 1707 

Table 1: Results for the class (i) instances. 

An astonishing but very convenient phenomenon was that the linear pro­
gramming solution turned out to be integral for each instance: OPT = 100 
for all n and all instance classes. What is more, the solution of each inter­
mediate linear programming problem was always integral as well - and we 
have solved millions of these. This raises the question whether integrality 
of the optimal solution of the linear programming relaxation is a structural 
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n OPT ACT !vICT ACOL !v[COL · ALP NILP. 
10 100 0.10 0.16 44 41 13 21 
25 100 1.72 2.40 113 151 56 74 
50 100 10.06 12.41 347 397 223 219 
75 100 26.88 46.09 541 725 325 481 
100 100 61.01 193.21 870 1459 520 792 
125 100 387.63 628.13 1344 2161 772 1001 

Table 2: Results for the class (ii) instances. 

n OPT ACT MCT ACOL MCOL ALP !vILP 
10 100 0.13 0.21 33 52 15 27 
25 100 2.16 4.28 122 195 64 102 
50 100 38.70 55.24 358 513 193 254 
75 100 166.22 1169.10 1100 1409 591 783 
100 100 627.16 870.73 1357 1811 763 1048 

Table 3: Results for the class (iii) instances. 

property. It is not, as was shown by a counterexample with only 5 jobs in 
Van den Akker et at. (1996). 

Since the pricing algorithm requires pseudo-polynomial time, we can ex­
pect beforehand that the performance of our algorithm deteriorates with the 
size of the processing times of the jobs. Indeed, the class (ii) instances, with 
smaller processing times, are easier to solve than the class (i) instances. Fur­
thermore, as expected, our algorithm has much more difficulty in solving the 
class (iii) and (iv) instances. These are indeed hard instances, for two rea­
sons: the jobs are very similar, since they all have weight to processing time 

n OPT ACT A1CT ACOL MCOL ALP !vILP 
10 100 0.21 0.31 37 38 17 23 
25 100 4.66 5.13 170 203 100 113 
50 100 47.53 62.37 429 528 225 304 
75 100 226.26 282.00 854 1075 I 

442 562 
100 100 823.83 928.71 1538 1669 760 815 

Table 4: Results for the class (iv) instances. 
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ratios close to one, and the cost difference between an early position and a 
tardy position is very small for all jobs. One effect is that the sensitivity 
analysis to try and fix a job to either the early or the tardy set is then less 
effective. 

As a whole, our computational results show that using our algorithm we 
can solve larger problems to optimality than before: we solve instances with 
up to 125 jobs, while De et al. (1994) went no further than 40 jobs, and the 
two purely column generation algorithm by Chen and Powell (1997) and Van 
den Akker et al. (1996) can solve class (i) and class (ii) instances with up to 
60 jobs only. We note that these algorithms were not tested out on class (iii) 
and (iv) instances, which are much more difficult to solve. 

5 Concluding remarks 

We have presented an effective column generation approach combined with 
Lagrangean relaxation elements for solving the problem of scheduling jobs 
around a large common due date with asymmetric weights. Using this 
method, we were able to solve instances with up to 125 jobs to optimality 
by solving the linear programming relaxation of a set covering formulation 
of the problem - branch-and-bound was never required for our randomly 
generated instances. The integrality gap can be positive, unbounded even, 
however. Note that, if necessary, our lower bounding approach can easily 
be used in a branch-and-bound algorithm in which we partition by putting 
some Jj either in the early, or in the tardy schedule; we have discussed the 
consequences of such a job fixing in Section 3.3. 

The performance of our algorithm marks quite a computational progress 
for this problem; after all, two purely column generation algorithms could 
solve instances with up to only 60 jobs to optimality. The contribution of 
this paper is the structured way in which Lagrangean relaxation is embed­
ded in the column generation algorithm. Before, the Lagrangean bound was 
primarily used to try and fathom nodes in a branch-and-price tree. In this 
paper, we have shown that there are more effective methods to use the La­
grangean bound; indeed, these methods not only speed up convergence but 
also speed up the pricing algorithms. 

We believe that such a combination of column generation and Lagrangean 
relaxation, where the Lagrangean bound is used for other and more effec-
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tive purposes than just fathoming nodes in a branch-and-price algorithm, 
is promising for other applications as well. Indeed, Gademann and Van de 
Velde (1998) show how Lagrangean relaxation can be embedded in a col­
umn generation algorithm for an order batching problem in a parallel-aisle 
warehouse. 

The phenomenon that the randomly generated instances are easy in prac­
tice in the sense that the linear programming solution always seems to give an 
integral solution is intriguing. Hoogeveen et al. (1994) showed why randomly 
generated instances of the symmetric earliness-tardiness problem with unit 
penalty weights, which is NP-hard in general, can be expected to be compu­
tationally easy for large instances. For minimizing total weighted completion 
time on identical parallel machines, Chan et al. (1995) proved that the linear 
programming solution value of a set covering formulation of the problem is, 
under mild conditions, asymptotically optimal. But it is still an open ques­
tion why randomly generated instances of the earliness-tardiness problem 
under study are computationally relatively easy. 
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