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Abstract

This paper introduces LEMON, a generic open source C++ library of graph and network algorithms and
related data structures. It is a package of highly efficient and versatile tools with simple and convenient
interface, targeting both computer scientists and the operations research community, as well as serving
educational purposes. In this paper, the basic design concepts, features and performance of LEMON are
compared to similar software packages, namely BGL (Boost Graph Library) and LEDA. Various implemen-
tation details are also discussed demonstrating the sophisticated use of C++ templates and other techniques.
Due to its clear concepts and design, the ease of use and impressive performance, LEMON proved to be a
remarkable alternative to similar open source or commercial libraries.
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1 Introduction

LEMON [16] is a C++ template library with focus on combinatorial optimization
tasks connected mainly with graphs and networks. Its name is an abbreviation of
Library for Efficient Modeling and Optimization in Networks. LEMON is an open
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source software project of Egerváry Research Group on Combinatorial Optimization
(EGRES) [9] at Department of Operations Research, Eötvös Loránd University, Bu-
dapest, Hungary. It is also a member of the COIN-OR initiative [6], a collection of
open source projects related to operations research. Its clear design and the permis-
sive licensing scheme make LEMON favorable for commercial and non-commercial
software development, as well as research purposes.

The goal of the library is to provide efficient, easy-to-use and well-cooperating
software components, which help solving complex real-life optimization problems.
These components include graph implementations and related data structures, fun-
damental graph and network algorithms (such as graph search, shortest path, span-
ning tree, matching and network flow algorithms) besides various auxiliary tools.
Furthermore, the library provides a common high-level interface for several linear
programming (LP) and mixed integer programming (MIP) [7] solvers.

The basic motivation for developing LEMON was to support researchers and
practitioners working in the area of graph theory and network optimization by es-
tablishing an open source library that is more suitable for them than other alterna-
tives on the market. At present, LEMON is extensively used for research, including
network design, traffic routing and general graph theory [1,4,13,20], as well as in
education at Eötvös Loránd University and Budapest University of Technology and
Economics. It is also used in several commercial applications.

The rest of this paper is organized as follows. Section 2 provides an overview of
the main concepts and features of LEMON compared to BGL [2] and LEDA [15],
the most widely known and highly regarded C++ graph libraries. Section 3 de-
scribes selected details of the implementation demonstrating the applied language
techniques. In Section 4, the performance of the discussed libraries is compared
through benchmark tests of fundamental algorithms. Finally, some general conclu-
sions are drawn in Section 5.

2 Overview

Probably, the best known C++ graph library is BGL, that is why the readers are
introduced to LEMON through simple and equivalent sample codes using these two
libraries. In Figure 1, both codes construct a directed graph, assign lengths to the
arcs and run Dijkstra’s algorithm. These examples also show that programs using
LEMON tend to be shorter and easier to understand, since the user does not have
to deal with various template techniques (like template metaprogram lists and traits
classes).

2.1 Graph Structures

Although LEMON is a generic library, the main graph structures are not template
classes, which is made possible by an important design decision. Namely, all data
assigned to nodes and arcs are stored separately from the graph structures (see
Section 2.3).

The example in Figure 1 uses ListDigraph, which is a doubly-linked adjacency
list based directed graph implementation. Another important digraph structure is
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typedef adjacency_list<listS, vecS,
directedS, no_property,
property<edge_weight_t, int> > graph_t;

typedef graph_traits<graph_t> traits_t;
graph_t g;
property_map<graph_t, edge_weight_t>::type

length = get(edge_weight, g);

traits_t::vertex_descriptor
s = add_vertex(g), t = add_vertex(g);

// add more vertices

traits_t::edge_descriptor
e = add_edge(s, t, g).first;

length[e] = 8;
// add more edges

vector<int> dist(num_vertices(g));
dijkstra_shortest_paths(g, s,

distance_map(&dist[0]));

ListDigraph g;
ListDigraph::ArcMap<int> length(g);

ListDigraph::Node s = g.addNode();
ListDigraph::Node t = g.addNode();
// add more nodes

ListDigraph::Arc a = g.addArc(s, t);
length[a] = 8;
// add more arcs

ListDigraph::NodeMap<int> dist(g);
dijkstra(g, length)

.distMap(dist).run(s);

Fig. 1. Sample codes using BGL and LEMON, respectively

SmartDigraph, which stores the nodes and arcs continuously in vectors and uses
simply-linked lists for keeping track of the incident arcs of each node. Therefore,
it has smaller memory footprint and it can be considerably faster, at the cost that
nodes and arcs cannot be removed from it. ListGraph and SmartGraph are the undi-
rected versions of these classes. In addition to these general structures, LEMON also
contains special purpose classes for handling full graphs, grid graphs and hypercube
graphs.

BGL implements a single adjacency list based graph class, but it can be cus-
tomized with template parameters that specify the internal storage structures for
nodes and arcs. BGL also contains a matrix based graph type, which is missing
from LEMON, but the full graph structures with subgraph adaptors (see Section 2.5)
provide reasonable substitutes for that.

In LEMON, the undirected Graph concept also fulfills the Digraph concept,
in such a way that each edge of a graph can also be regarded as two oppositely
directed arcs. As a result, all directed graph algorithms automatically run on undi-
rected graphs, as well (provided it makes sense). Furthermore, some algorithms
can be implemented simpler (e.g., planar graph algorithms), because we can dis-
tinguish the undirected edges from their directed variants. This solution entirely
differs from BGL, where directed and undirected graphs have the same interfaces,
but with different semantics. Using undirected graphs in BGL, the edges are usu-
ally considered undirected, but they have directions in some cases (for example, in
iterations), which could be confusing. Moreover, BGL does not allow to define a
property map whose keys are the directed variants of the edges, although it would
also be useful in algorithms.

The LEDA graph implementation is closed source, but it is probably quite similar
to the general graph structures of LEMON. The main difference is that digraphs and
graphs are implemented in the same class in LEDA and there are member functions
to switch between the two modes.

2.2 Iterators

LEMON iterators do not adhere to the STL compatibility, and so they provide a
more convenient interface. They are initialized to the first item in the traversed
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range by their constructors and their validity is checked by comparing them to a
global constant INVALID. In addition, iterators are convertible to the corresponding
item types, without having to use operator*(). This is not confusing, since the
program context always indicates whether we refer to the iterator or to the graph
item (they do not have conflicting functionalities).

Recall the examples shown in Figure 1. In LEMON, the computed distances of
the nodes can be printed to the standard output like this.

for (ListDigraph::NodeIt v(g); v != INVALID; ++v) {
cout << "d[" << g.id(v) << "] = " << dist[v] << endl;

}

In contrast with this, BGL iterators strictly follow the STL requirements of
input iterators. They must be dereferenced with the operator*() function in order
to get the corresponding item descriptors. The tie() function can be used to make
the code more compact and avoid programmer failures. In the BGL code, the node
distances can be printed as follows.

traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi) {

cout << "d[" << *vi << "] = " << dist[*vi] << endl;
}

BGL also provides several macros that simplify traversing graph items and define
the loop variables only in the scope of the loop.

BGL_FORALL_VERTICES(v, g, graph_t) {
cout << "d[" << v << "] = " << dist[v] << endl;

}

LEDA supports similar macros, but they do not allow to define the loop variables
in the scope of the loop.

node v;
forall_nodes(v, g) {

cout << "d[";
g.printNode(v);
cout << "] = " << dist[v] << endl;

}

2.3 Handling Graph Related Data

Beyond the graph structures, most graph algorithms need additional data associated
to the nodes and the arcs. For example, shortest path algorithms require a length
function on the arcs and they store the computed distance labels for the nodes.
Graph libraries support handling these associated values in various ways. The data
structures used for this purpose are typically called maps (not to be confused with
std::map, which provides O(log n) time access to the elements). Since they are
among the most frequently used data structures, maps have to be highly efficient
and convenient.

LEMON library uses only external storage graph maps, but they are updated
automatically on the changes of the graph (see Section 3.2). The main advantage
of the external maps is that they can be constructed and destructed freely, their
lifetimes are not determined by the lifetime of the graph. Moreover, separate storage
could result in better caching properties, especially using several maps on a huge
graph. In LEMON, you can declare maps like this.

ListDigraph::NodeMap<string> label(g);
ListDigraph::ArcMap<int> length(g);
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The map values can be retrieved and modified using the corresponding over-
loaded versions of operator[]().

label[v] = "source";
length[e] = 2 * length[f];

The LEMON maps are not only just storage classes, but also they are concepts
of any key–value based data access. Beside the standard graph maps, LEMON con-
tains several “lightweight” map adaptor classes, which perform various operations
on the data of the adapted maps when their access operations are called, but with-
out actually copying or modifying the original storage. These classes also conform
to the map concepts, thus they can be used like standard LEMON maps.

Let us suppose that we have a traffic network stored in a LEMON graph struc-
ture with two arc maps length and speed, which denote the physical length of each
arc and the maximum (or average) speed that can be achieved on the correspond-
ing road-section, respectively. If we are interested in the best traveling times, the
following code can be used.

dijkstra(g, divMap(length, speed)).distMap(dist).run(s);

BGL library uses both internal and external maps. The internal maps can be
specified as property lists or bundled properties. The bundled properties have a
simpler interface and their use is to be preferred. The advantage of internal maps is
that they are updated automatically if the underlying graph is changed. However,
the lifetimes of these maps are strictly bound to the graph.

LEDA uses only external storage for this purpose, but it provides two kinds
of data structures. The arrays are not updated automatically, but they are im-
plemented by vectors and their access operations take O(1) time. The map types
are more adaptable, they are not invalidated when the graph is changed. For this,
the maps are implemented by hashing and their access functions take more time.
Although these structures are external objects, additional space can be allocated
in the graphs, which are called slots. The newly created arrays and maps can be
assigned to empty slots, so the memory usage can be optimized.

2.4 Algorithms

LEMON provides several algorithms related to graph theory and combinatorial op-
timization. It contains well-known basic algorithms, such as breadth-first search
(BFS), depth-first search (DFS), Dijkstra algorithm, Kruskal algorithm and meth-
ods for discovering graph properties like connectivity, bipartiteness or Euler prop-
erty, as well as more complex optimization algorithms for finding maximum flows,
minimum cuts, matchings, minimum cost flows and arc-disjoint paths. BGL and
LEDA features similar algorithms, but with different interfaces.

In LEMON, the algorithms are implemented basically as classes, but for some
of them, function-type interfaces are also available for the sake of convenience. For
instance, the Dijkstra algorithm is implemented in the Dijkstra template class,
but the dijkstra() function is also defined, which can still be used quite flexibly
due to named parameters.

The basic functionality of the algorithms can be highly extended using special
purpose map types for their internal data structures. For example, the Dijkstra
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class stores a ProcessedMap, which has to be a writable node map of bool value
type. The assigned value of each node is set to true when the node is processed, i.e.,
its actual distance is found. Applying a special map, LoggerBoolMap, the processed
order of the nodes can easily be stored in a standard container.

vector<ListDigraph::Node> process_order;
dijkstra(g, length)

.processedMap(loggerBoolMap(back_inserter(process_order)))

.run(s);

BGL applies another approach, it implements several algorithms with visitor
based interfaces. The visitor classes are the generalizations of function objects, they
have more entry points by defining several callback member functions. A visitor
based algorithm emits different events during the execution and calls the corre-
sponding entry functions of the visitor. In some cases, this solution could be more
convenient than the use of customized maps because all event handler operations
are specified in the same class. Therefore, LEMON also contains visitor based
algorithm classes for BFS and DFS.

LEDA provides much less flexibility in using algorithms. Although they are
defined as template functions, only some explicit instantiations are available for the
user.

2.5 Graph Adaptors

The LEMON graph adaptor classes serve for considering graphs in different ways.
The adaptors can be used exactly the same as “real” graphs (i.e., they conform
to the graph concepts), thus all generic algorithms can be performed on them.
However, the adaptor classes use the underlying graph structures and operations
when their methods are called, thus they have only negligible memory usage and
do not perform sophisticated algorithmic actions. This technique yields convenient
and elegant tools for the cases when a graph has to be used in a specific alteration,
but copying it would be too expensive (in time or in memory usage) compared to
the algorithm that should be executed on it.

The following example shows how the ReverseDigraph adaptor can be used to
run Dijksta’s algorithm on the reverse oriented graph. Note that the maps of the
original graph can be used in connection with the adaptor, since the node and arc
types of the adaptors convert to the original item types.

dijkstra(reverseDigraph(g), length).distMap(dist).run(s);

Using ReverseDigraph could be as efficient as working with the original graph,
but not all adaptors can be so fast, of course. For example, the subgraph adaptors
have to access filter maps for the nodes and/or the arcs, thus their iterators are
significantly slower than the original iterators. LEMON also provides some more
complex adaptors, for instance, SplitNodes, which can be used for splitting each
node in a directed graph and ResidualDigraph for modeling the residual network
for flow and matching problems.

BGL also features some graph adaptors, but only a few basic ones, like
reverse graph or filtered graph. On the other hand, LEDA cannot provide
adaptors due to the closed source distribution.
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2.6 LP Interface

Linear programming (LP) is one of the most important general methods of op-
erations research and LP solvers are widely used in optimization software. The
interface provided in LEMON makes it possible to specify LP problems using a
high-level syntax.

Lp lp;

Lp::Col x1 = lp.addCol();
Lp::Col x2 = lp.addCol();

lp.addRow(0 <= x1 + x2 <= 100);
lp.addRow(2 * x1 <= x2 + 32);

lp.colLowerBound(x1, 0);
lp.colUpperBound(x2, 100);

lp.max();
lp.obj(10 * x1 + 6 * x2);
lp.solve();

cout << "Objective function value: " << lp.primal() << endl;
cout << "x1 = " << lp.primal(x1) << endl;
cout << "x2 = " << lp.primal(x2) << endl;

Lp::Col type represents the variables in the LP problems, while Lp::Row rep-
resents the constraints. The numerical operators can be used to form expressions
from columns and dual expressions from rows. Due to the suitable operator over-
loads, a problem can be described in C++ conveniently, directly as it is expressed
in mathematics. This solution is similar to the ILOG Concert Technology [8].

Note that LEMON does not implement an LP solver, it just wraps various
libraries with a uniform high-level interface. Currently, the following linear and
mixed integer programming packages are supported: GLPK [11], Clp [5], Cbc [3],
ILOG CPLEX [8] and SoPlex [18]. However, additional wrapper classes for new
solvers can also be implemented quite easily.

3 Implementation Details

This section presents some interesting implementation details of LEMON, along
with specific code examples.

3.1 Extending Graph Interfaces Using Mixins

A fundamental problem of designing a general graph concept is that an easy-to-
implement concept should require the least number of overlapping functionality,
but this approach strongly limits the flexibility and efficiency of the interface. This
contradiction is overcome by developing two-level graph concepts.

In LEMON, the user-level graph concepts define a wide range of member func-
tions and nested classes, therefore, they support convenient and flexible use. On
the other hand, the low-level graph concepts define only the very basic func-
tionality, for example, simplified function-based iteration. These simple inter-
faces are extended to the user-level concepts using the template Mixin strat-
egy [17]. Specifically, if a class DigraphBase implements the low-level interface,
then DigraphExtender<DigraphBase> will fulfill the user-level Digraph concept.

class DigraphBase {
public:
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// Node and Arc classes
class Node { ... };
class Arc { ... };

// Basic iteration
void first(Node& node) const;
void next(Node& node) const;
...

};

The extender adds the convenient class-based iterators and the map classes to the
graph, as well as the necessary members for alteration observing (see Section 3.2).
If the underlying graph class also defines functions for node and arc addition and
deletion, then they are overridden to handle the alteration observing, as well.

template <typename DigraphBase>
class DigraphExtender : public DigraphBase {
public:

// Class-based iterators
class NodeIt : public Node {
public:

NodeIt(const DigraphExtender& g) : _graph(g) {
_graph.first(*this);

}
NodeIt& operator++() {

_graph.next(*this);
return *this;

}
...

private:
const DigraphExtender& _graph;

};
...

};

3.2 Signaling Graph Alterations

The LEMON graph maps are external, auto-updated structures (see Section 2.3).
They are implemented using arrays or std::vectors to ensure the efficient data
access, which is the most important design goal of maps. However, these structures
have to be extended when new nodes or arcs are added to the graph.

The graph and map classes implement the Observer design pattern [10] and
they signal the changes of the node and arc sets. The observed events are lim-
ited to adding and removing one or several items, building the graph from scratch
and removing all items from it. The observers are inherited from the correspond-
ing AlterationNotifier<Graph, Item>::ObserverBase class, and they have to
override the event handler functions.

The graph maps are constructed to be exception safe, in fact, they guarantee
strong exception safety [19]. If a node or arc is inserted into a graph, but an
attached map cannot be extended, then each map extended earlier is rolled back to
its original state.

3.3 Tags and Specializations

The performance and the functionality of generic libraries can be further improved
by template specializations. In LEMON, tags are defined for several purposes, for
instance, the graphs are marked with UndirectedTag.

class ListDigraph {
typedef False UndirectedTag;
...

};
class ListGraph {

typedef True UndirectedTag;
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...
};

For example, the function eulerian() is specialized for undirected graphs. A di-
rected graph is Eulerian if it is connected and the number of incoming and outgoing
arcs are the same for each node. On the other hand, an undirected graph is Eulerian
if it is connected and the number of incident edges is even for each node.

template<typename GR>
typename enable_if<typename GR::UndirectedTag, bool>::type
eulerian(const GR &g) {

for (typename GR::NodeIt n(g); n != INVALID; ++n)
if (countIncEdges(g, n) % 2 == 1) return false;

return connected(g);
}

LEMON uses bool valued tags and enable if borrowed from the Boost libraries
[2,12,21] to implement the specializations. This technique allows more options in
combination of rules than the simple tag based dispatching.

4 Performance

This section compares the running time performance of LEMON to BGL and LEDA.
The experiments were conducted using LEMON 1.2 and Boost 1.41.0, the latest
stable releases at the time of writing, and LEDA 5.0. For each library, the most
efficient general graph structure was used with the default options and parameters
of the algorithms.

Two fundamental problems are considered in the tests: (1) finding shortest paths
from a designated source node in a graph with non-negative arc lengths; (2) finding
a maximum flow between two nodes in a network with arc capacities.

All test instances were created with NETGEN [14], a popular generator for
various network problems. Two different benchmark suites are used. The first one
contains sparse graphs, for which m is about n log2 n, where n and m denote the
number of nodes and arcs, respectively. In the second set, there are networks for
which m is roughly n

√
n, so they are relatively dense.

The benchmark tests were performed on a 3.2GHz Intel Xeon machine with
2GB RAM and 2MB cache, running openSUSE 11.2 operating system. The codes
were compiled with GCC version 4.4.1 using -O3 optimization flag. Each chart
shows running times in seconds as a function of the number of nodes in the graph.
To obtain suitable diagrams, logarithmic scale is used for both axes.

Figure 2 shows the performance results for finding shortest paths. All the three
libraries implement Dijkstra’s algorithm for this problem. The differences could
mainly be induced by the efficiency of the graph structures and the applied heap
representations. BGL was faster than LEDA by a factor between 1.5 and 3.5, but
LEMON performed slightly better than BGL on both problem sets.

The benchmark results for the maximum flow problems are presented in Figure 3.
Each library provides an implementation of the preflow push-relabel algorithm of
Golberg and Tarjan [7] with various heuristics. In these tests, LEDA clearly out-
performed BGL, especially on sparse networks, for which it was about 2–3 times
faster. However, LEMON was even significantly more efficient than LEDA on all
instances.
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Fig. 2. Benchmark results for the Dijkstra algorithm
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Fig. 3. Benchmark results for maximum flow algorithms

Several other experiments were also made using more algorithms applied to var-
ious generated problems and real-life networks, but they are omitted in this paper
due to page limit. All comparisons showed similar relations and suggested the
same conclusions. Therefore, it seems to be justified to claim that the fundamental
algorithms in LEMON are typically more efficient than the corresponding imple-
mentations of the other two libraries. This achievement is certainly one of the most
important benefits of LEMON, it could be a major reason for using this library.

5 Conclusions

LEMON is a highly efficient, open source C++ graph template library having clear
design and convenient interface. It provides a considerable range of data structures,
algorithms and other practical components, which can be combined easily for solv-
ing problems of various types related to graphs and networks. Comparing to similar
libraries, LEMON shows remarkable advantages in versatility, convenience and per-
formance. According to comprehensive benchmark tests, its essential algorithms
proved to be significantly more efficient than the corresponding implementations
of BGL and LEDA. For these reasons, LEMON is favorable for both research and
development in the area of combinatorial optimization and network design.
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editors, 12th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering,
QAOOSE Workshop, ECOOP 2008, pages 1–10, 2008.
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