
LEMON – an Open Source C++
Graph Template Library

Balázs Dezső¹, Alpár Jüttner², Péter Kovács¹

¹Department of Algorithms and Their Applications
Eötvös Loránd University, Budapest, Hungary

{deba,kpeter}@inf.elte.hu

² Department of Operations Research
Eötvös Loránd University, Budapest, Hungary

alpar@cs.elte.hu

WGT 2010 – Workshop on Generative Technologies
Paphos, Cyprus, March 27, 2010

{deba,kpeter}@inf.elte.hu
alpar@cs.elte.hu

Overview

1 Introduction to LEMON
What is LEMON?
Graph Structures
Iterators
Handling Graph Related Data
Algorithms
Graph Adaptors
LP Interface
Technical Support

2 Implementation Details
Extending Graph Interfaces Using Mixins
Signaling Graph Alterations
Tags and Specializations

3 Performance
4 History and Statistics
5 Conclusions

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Section 1

1. Introduction to LEMON

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Introduction to LEMON

What is LEMON?
LEMON is an abbreviation for

Library for Efficient Modeling and Optimization in Networks.
It is an open source C++ template library for optimization tasks
related to graphs and networks.
It provides highly efficient implementations of common data
structures and algorithms.
It is maintained by the EGRES group at Eötvös Loránd
University, Budapest, Hungary.
http://lemon.cs.elte.hu

Sponsors:

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

http://lemon.cs.elte.hu

Introduction to LEMON

What is this talk about?

The basic design concepts and features of LEMON
are presented.
Selected implementation details are also presented
demonstrating the use of C++ templates and other techniques.
The performance of the library is compared to BGL (Boost
Graph Library) and LEDA, the two major competitors of LEMON.
BGL is open source, LEDA is a commercial library.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Design Goals

Genericity:
clear separation of data structures and algorithms.

Running time efficiency:
to be appropriate for using in running time critical applications.

Ease of use:
elegant and convenient interface based on clear design concepts,
provide a large set of flexible components,
make it easy to implement new algorithms and tools,
support easy integration into existing applications.

Applicability for production use:
open source code with a very permissive licensing scheme
(Boost 1.0 license).

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Design Goals

Genericity:
clear separation of data structures and algorithms.

Running time efficiency:
to be appropriate for using in running time critical applications.

Ease of use:
elegant and convenient interface based on clear design concepts,
provide a large set of flexible components,
make it easy to implement new algorithms and tools,
support easy integration into existing applications.

Applicability for production use:
open source code with a very permissive licensing scheme
(Boost 1.0 license).

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Design Goals

Genericity:
clear separation of data structures and algorithms.

Running time efficiency:
to be appropriate for using in running time critical applications.

Ease of use:
elegant and convenient interface based on clear design concepts,
provide a large set of flexible components,
make it easy to implement new algorithms and tools,
support easy integration into existing applications.

Applicability for production use:
open source code with a very permissive licensing scheme
(Boost 1.0 license).

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Design Goals

Genericity:
clear separation of data structures and algorithms.

Running time efficiency:
to be appropriate for using in running time critical applications.

Ease of use:
elegant and convenient interface based on clear design concepts,
provide a large set of flexible components,
make it easy to implement new algorithms and tools,
support easy integration into existing applications.

Applicability for production use:
open source code with a very permissive licensing scheme
(Boost 1.0 license).

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

LICENSE (same as BOOST)

Copyright (C) 2003-2010 Egerváry Jenő Kombinatorikus
Optimalizálási Kutatócsoport (Egerváry Combinatorial
Optimization Research Group, EGRES).

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the
Software, and to prepare derivative works of the Software, and
to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire
statement, including the above license grant, this restriction
and the following disclaimer, must be included in all copies
of the Software, in whole or in part, and all derivative works
of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated
by a source language processor.

...

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Introductory Example

Let us build a directed graph, assign costs to the arcs and run Dijkstra’s
algorithm on it.

typedef adjacency_list<listS, vecS,
directedS, no_property,
property<edge_weight_t, int> > graph_t;

graph_t g;
property_map<graph_t, edge_weight_t>::type
length = get(edge_weight, g);

graph_traits<graph_t>::vertex_descriptor
s = add_vertex(g), t = add_vertex(g);

// add more vertices

graph_traits<graph_t>::edge_descriptor
e = add_edge(s, t, g).first;

length[e] = 8;
// add more edges

vector<int> dist(num_vertices(g));
dijkstra_shortest_paths(g, s,
distance_map(&dist[0]));

BGL code

ListDigraph g;
ListDigraph::ArcMap<int> length(g);

ListDigraph::Node s = g.addNode();
ListDigraph::Node t = g.addNode();
// add more nodes

ListDigraph::Arc a = g.addArc(s, t);
length[a] = 8;
// add more arcs

ListDigraph::NodeMap<int> dist(g);
dijkstra(g, length)
.distMap(dist).run(s);

LEMON code

Programs using LEMON tend to be shorter and easier to understand.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Introductory Example

Let us build a directed graph, assign costs to the arcs and run Dijkstra’s
algorithm on it.

typedef adjacency_list<listS, vecS,
directedS, no_property,
property<edge_weight_t, int> > graph_t;

graph_t g;
property_map<graph_t, edge_weight_t>::type
length = get(edge_weight, g);

graph_traits<graph_t>::vertex_descriptor
s = add_vertex(g), t = add_vertex(g);

// add more vertices

graph_traits<graph_t>::edge_descriptor
e = add_edge(s, t, g).first;

length[e] = 8;
// add more edges

vector<int> dist(num_vertices(g));
dijkstra_shortest_paths(g, s,
distance_map(&dist[0]));

BGL code

ListDigraph g;
ListDigraph::ArcMap<int> length(g);

ListDigraph::Node s = g.addNode();
ListDigraph::Node t = g.addNode();
// add more nodes

ListDigraph::Arc a = g.addArc(s, t);
length[a] = 8;
// add more arcs

ListDigraph::NodeMap<int> dist(g);
dijkstra(g, length)
.distMap(dist).run(s);

LEMON code

Programs using LEMON tend to be shorter and easier to understand.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Introductory Example

Let us build a directed graph, assign costs to the arcs and run Dijkstra’s
algorithm on it.

typedef adjacency_list<listS, vecS,
directedS, no_property,
property<edge_weight_t, int> > graph_t;

graph_t g;
property_map<graph_t, edge_weight_t>::type
length = get(edge_weight, g);

graph_traits<graph_t>::vertex_descriptor
s = add_vertex(g), t = add_vertex(g);

// add more vertices

graph_traits<graph_t>::edge_descriptor
e = add_edge(s, t, g).first;

length[e] = 8;
// add more edges

vector<int> dist(num_vertices(g));
dijkstra_shortest_paths(g, s,
distance_map(&dist[0]));

BGL code

ListDigraph g;
ListDigraph::ArcMap<int> length(g);

ListDigraph::Node s = g.addNode();
ListDigraph::Node t = g.addNode();
// add more nodes

ListDigraph::Arc a = g.addArc(s, t);
length[a] = 8;
// add more arcs

ListDigraph::NodeMap<int> dist(g);
dijkstra(g, length)
.distMap(dist).run(s);

LEMON code

Programs using LEMON tend to be shorter and easier to understand.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Graph Structures

LEMON contains very efficient graph implementations (both in
terms of running time and memory space).
They have easy-to-use interface.

Generic design:
C++ template programming is heavily used.
There are generic graph concepts and several graph
implementations for diverging purposes.
The algorithms work with arbitrary graph structures.
Users can also write their own graph classes.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Graph Structures

LEMON contains very efficient graph implementations (both in
terms of running time and memory space).
They have easy-to-use interface.

Generic design:
C++ template programming is heavily used.
There are generic graph concepts and several graph
implementations for diverging purposes.
The algorithms work with arbitrary graph structures.
Users can also write their own graph classes.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Working with Graphs

Creating a graph
using namespace lemon;
ListDigraph g;

Adding nodes and arcs
ListDigraph::Node u = g.addNode();
ListDigraph::Node v = g.addNode();
ListDigraph::Arc a = g.addArc(u,v);

Removing items
g.erase(a);
g.erase(v);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Working with Graphs

Creating a graph
using namespace lemon;
ListDigraph g;

Adding nodes and arcs
ListDigraph::Node u = g.addNode();
ListDigraph::Node v = g.addNode();
ListDigraph::Arc a = g.addArc(u,v);

Removing items
g.erase(a);
g.erase(v);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Working with Graphs

Creating a graph
using namespace lemon;
ListDigraph g;

Adding nodes and arcs
ListDigraph::Node u = g.addNode();
ListDigraph::Node v = g.addNode();
ListDigraph::Arc a = g.addArc(u,v);

Removing items
g.erase(a);
g.erase(v);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

The graph structures provide several iterators for traversing the
nodes and arcs.

Iteration on nodes
for (ListDigraph::NodeIt v(g); v != INVALID; ++v) {...}

Iteration on arcs
for (ListDigraph::ArcIt a(g); a != INVALID; ++a)
for (ListDigraph::OutArcIt a(g,v); a != INVALID; ++a)
for (ListDigraph::InArcIt a(g,v); a != INVALID; ++a)

Note: INVALID is a constant, which converts to each and every iterator and
graph item type.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

The graph structures provide several iterators for traversing the
nodes and arcs.

Iteration on nodes
for (ListDigraph::NodeIt v(g); v != INVALID; ++v) {...}

Iteration on arcs
for (ListDigraph::ArcIt a(g); a != INVALID; ++a)
for (ListDigraph::OutArcIt a(g,v); a != INVALID; ++a)
for (ListDigraph::InArcIt a(g,v); a != INVALID; ++a)

Note: INVALID is a constant, which converts to each and every iterator and
graph item type.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

The graph structures provide several iterators for traversing the
nodes and arcs.

Iteration on nodes
for (ListDigraph::NodeIt v(g); v != INVALID; ++v) {...}

Iteration on arcs
for (ListDigraph::ArcIt a(g); a != INVALID; ++a)
for (ListDigraph::OutArcIt a(g,v); a != INVALID; ++a)
for (ListDigraph::InArcIt a(g,v); a != INVALID; ++a)

Note: INVALID is a constant, which converts to each and every iterator and
graph item type.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

Contrary to C++ STL, LEMON iterators are convertible to the
corresponding item types without having to use operator*().
This provides a more convenient interface.
The program context always indicates whether we refer to the
iterator or to the graph item.

Example: printing node identifiers
for (ListDigraph::NodeIt v(g); v != INVALID; ++v)

std::cout << g.id(v) << std::endl;

← iterator
← item

On the other hand, BGL iterators strictly follow the STL concepts:

BGL example 1
traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi)
std::cout << *vi << std::endl;

This can be made much simpler using special macros:

BGL example 2
BGL_FORALL_VERTICES(v, g, graph_t)

std::cout << v << std::endl;

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

Contrary to C++ STL, LEMON iterators are convertible to the
corresponding item types without having to use operator*().
This provides a more convenient interface.
The program context always indicates whether we refer to the
iterator or to the graph item.

Example: printing node identifiers
for (ListDigraph::NodeIt v(g); v != INVALID; ++v)

std::cout << g.id(v) << std::endl;

← iterator
← item

On the other hand, BGL iterators strictly follow the STL concepts:

BGL example 1
traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi)
std::cout << *vi << std::endl;

This can be made much simpler using special macros:

BGL example 2
BGL_FORALL_VERTICES(v, g, graph_t)

std::cout << v << std::endl;

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

Contrary to C++ STL, LEMON iterators are convertible to the
corresponding item types without having to use operator*().
This provides a more convenient interface.
The program context always indicates whether we refer to the
iterator or to the graph item.

Example: printing node identifiers
for (ListDigraph::NodeIt v(g); v != INVALID; ++v)

std::cout << g.id(v) << std::endl;

← iterator
← item

On the other hand, BGL iterators strictly follow the STL concepts:

BGL example 1
traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi)
std::cout << *vi << std::endl;

This can be made much simpler using special macros:

BGL example 2
BGL_FORALL_VERTICES(v, g, graph_t)

std::cout << v << std::endl;

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

Example: printing node identifiers
for (ListDigraph::NodeIt v(g); v != INVALID; ++v)

std::cout << g.id(v) << std::endl;
← iterator
← item

On the other hand, BGL iterators strictly follow the STL concepts:

BGL example 1
traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi)
std::cout << *vi << std::endl;

This can be made much simpler using special macros:

BGL example 2
BGL_FORALL_VERTICES(v, g, graph_t)

std::cout << v << std::endl;

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

Example: printing node identifiers
for (ListDigraph::NodeIt v(g); v != INVALID; ++v)

std::cout << g.id(v) << std::endl;
← iterator
← item

On the other hand, BGL iterators strictly follow the STL concepts:

BGL example 1
traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout << *vi << std::endl;

This can be made much simpler using special macros:

BGL example 2
BGL_FORALL_VERTICES(v, g, graph_t)

std::cout << v << std::endl;

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Iterators

Example: printing node identifiers
for (ListDigraph::NodeIt v(g); v != INVALID; ++v)

std::cout << g.id(v) << std::endl;
← iterator
← item

On the other hand, BGL iterators strictly follow the STL concepts:

BGL example 1
traits_t::vertex_iterator vi, vend;
for (tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout << *vi << std::endl;

This can be made much simpler using special macros:

BGL example 2
BGL_FORALL_VERTICES(v, g, graph_t)

std::cout << v << std::endl;

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Handling Graph Related Data

In LEMON, the graph classes represent only the pure structure
of the graph.
All associated data (e.g. node labels, arc costs or capacities) are
stored separately using so-called maps.

Creating maps
ListDigraph::NodeMap<string> label(g);
ListDigraph::ArcMap<int> cost(g);

Accessing map values
label[v] = "source";
cost[e] = 2 * cost[f];

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Handling Graph Related Data

In LEMON, the graph classes represent only the pure structure
of the graph.
All associated data (e.g. node labels, arc costs or capacities) are
stored separately using so-called maps.

Creating maps
ListDigraph::NodeMap<string> label(g);
ListDigraph::ArcMap<int> cost(g);

Accessing map values
label[v] = "source";
cost[e] = 2 * cost[f];

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Handling Graph Related Data

In LEMON, the graph classes represent only the pure structure
of the graph.
All associated data (e.g. node labels, arc costs or capacities) are
stored separately using so-called maps.

Creating maps
ListDigraph::NodeMap<string> label(g);
ListDigraph::ArcMap<int> cost(g);

Accessing map values
label[v] = "source";
cost[e] = 2 * cost[f];

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Benefits of Graph Maps

Efficient. Accessing map values is as fast as reading or writing
an array.

Dynamic. You can create and destruct maps freely.

Whenever you need, you can allocate a new map.
When you leave its scope, the map will be deallocated
automatically.
The lifetimes of maps are not bound to lifetime of the graph.

Automatic. The maps are updated automatically on the
changes of the graph.

If you add new nodes or arcs to the graph, the storage of the
existing maps will be expanded and the new slots will be
initialized.
If you remove items from the graph, the corresponding values in
the maps will be properly destructed.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Benefits of Graph Maps

Efficient. Accessing map values is as fast as reading or writing
an array.

Dynamic. You can create and destruct maps freely.

Whenever you need, you can allocate a new map.
When you leave its scope, the map will be deallocated
automatically.
The lifetimes of maps are not bound to lifetime of the graph.

Automatic. The maps are updated automatically on the
changes of the graph.

If you add new nodes or arcs to the graph, the storage of the
existing maps will be expanded and the new slots will be
initialized.
If you remove items from the graph, the corresponding values in
the maps will be properly destructed.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Benefits of Graph Maps

Efficient. Accessing map values is as fast as reading or writing
an array.

Dynamic. You can create and destruct maps freely.

Whenever you need, you can allocate a new map.
When you leave its scope, the map will be deallocated
automatically.
The lifetimes of maps are not bound to lifetime of the graph.

Automatic. The maps are updated automatically on the
changes of the graph.

If you add new nodes or arcs to the graph, the storage of the
existing maps will be expanded and the new slots will be
initialized.
If you remove items from the graph, the corresponding values in
the maps will be properly destructed.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Algorithms

LEMON provides efficient and flexible implementations of several
algorithms.
Basically, all algorithms are implemented as template classes.
However, function-type interface is also available for some of
them. It provides more convenient but less flexible usage.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Algorithm Interfaces

Class interface

Function-type interface

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Algorithm Interfaces

Class interface
Complex initializations.
Flexible execution control:

step-by-step execution,
multiple execution,
custom stop conditions.

Complex queries.
The used data structures (maps, heaps, etc.) can be changed.

Function-type interface

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Algorithm Interfaces

Class interface
Complex initializations.
Flexible execution control.
Complex queries.
The used data structures (maps, heaps, etc.) can be changed.

Function-type interface
Single execution: “this is the input”, “put the results here”.
Simpler usage:

template parameters do not have to be given explicitly,
arguments can be set using named parameters,
temporary expressions can be passed as reference parameters.

It provides less flexibility in the initialization, execution and
queries.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijkstra(g, length);
dijkstra.distMap(dist);

dijkstra.run(s);

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijkstra(g, length);
dijkstra.distMap(dist);

dijkstra.init();
dijkstra.addSource(s1); dijkstra.addSource(s2);
dijkstra.start();

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijkstra(g, length);
dijkstra.distMap(dist);

dijkstra.init();
dijkstra.addSource(s1); dijkstra.addSource(s2);

while (!dijkstra.emptyQueue()) {
ListDigraph::Node n = dijkstra.processNextNode();
std::cout << dijkstra.dist(n) << std::endl;

}

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using Algorithms

Class interface
Dijkstra<ListDigraph> dijkstra(g, length);
dijkstra.distMap(dist);

dijkstra.init();
dijkstra.addSource(s1); dijkstra.addSource(s2);

while (!dijkstra.emptyQueue()) {
ListDigraph::Node n = dijkstra.processNextNode();
std::cout << dijkstra.dist(n) << std::endl;

}

Function-type interface
dijkstra(g, length).distMap(dist).run(s);

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Graph Adaptors

Besides standard graph structures, LEMON also provides graph
adaptor classes.
They serve for considering other graphs in different ways using
the storage and operations of the underlying structure.

The adaptors also conform to the graph concepts, so they can
be used like standard graph structures.
Another view of a graph can be obtained without having to
modify or copy the actual storage.
This technique yields convenient and elegant codes.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Graph Adaptors

Besides standard graph structures, LEMON also provides graph
adaptor classes.
They serve for considering other graphs in different ways using
the storage and operations of the underlying structure.

The adaptors also conform to the graph concepts, so they can
be used like standard graph structures.
Another view of a graph can be obtained without having to
modify or copy the actual storage.
This technique yields convenient and elegant codes.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using Graph Adaptors

Obtaining a subgraph

SubDigraph adaptor

Original digraph

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using Graph Adaptors

Combining adaptors

Original digraph

Undirector adaptor

SubDigraph adaptor

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

LP Interface

LEMON provides a convenient, high-level common interface for
linear programming (LP) and mixed integer programming (MIP)
solvers.
Currently supported software packages:

GLPK: open source (GNU license)
Clp, Cbc: open source (COIN-OR LP and MIP solvers)
CPLEX: commercial
SoPlex: academic license

Additional wrapper classes for other solvers can be implemented
easily.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using LP Interface

Building and solving an LP problem
Lp lp;
Lp::Col x1 = lp.addCol();
Lp::Col x2 = lp.addCol();

lp.max();
lp.obj(10 * x1 + 6 * x2);

lp.addRow(0 <= x1 + x2 <= 100);
lp.addRow(2 * x1 <= x2 + 32);

lp.colLowerBound(x1, 0);

lp.solve();
std::cout << "Solution: " << lp.primal() << std::endl;
std::cout << "x1 = " << lp.primal(x1) << std::endl;
std::cout << "x2 = " << lp.primal(x2) << std::endl;

Mathematical formulation

max 10x1 + 6x2

0 ≤ x1 + x2 ≤ 100

2x1 ≤ x2 + 32

x1 ≥ 0

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Using LP Interface

Building and solving an LP problem
Lp lp;
Lp::Col x1 = lp.addCol();
Lp::Col x2 = lp.addCol();

lp.max();
lp.obj(10 * x1 + 6 * x2);

lp.addRow(0 <= x1 + x2 <= 100);
lp.addRow(2 * x1 <= x2 + 32);

lp.colLowerBound(x1, 0);

lp.solve();
std::cout << "Solution: " << lp.primal() << std::endl;
std::cout << "x1 = " << lp.primal(x1) << std::endl;
std::cout << "x2 = " << lp.primal(x2) << std::endl;

Mathematical formulation

max 10x1 + 6x2

0 ≤ x1 + x2 ≤ 100

2x1 ≤ x2 + 32

x1 ≥ 0

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Technical Support

Extensive documentation:
Reference manual (generated using Doxygen)
Tutorial

Mailing lists.
Version control (Mercurial).
Bug tracker system (Trac).
Build environment:

Autotools (Linux)
CMake (Windows)

Support of different compilers:
GNU C++
Intel C++
IBM xlC
Microsoft Visual C++

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Section 2

2. Implementation Details

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Design of Graph Concepts

A graph concept should be:

Convenient and flexible: to support various use cases, which
usually requires overlapping functionalities.
Simple: to make the implementation of new graph structures as
easy as possible.

These requirements are clearly contradictory.
Therefore, two-level graph concepts were developed in LEMON.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Design of Graph Concepts

A graph concept should be:

Convenient and flexible: to support various use cases, which
usually requires overlapping functionalities.
Simple: to make the implementation of new graph structures as
easy as possible.

These requirements are clearly contradictory.
Therefore, two-level graph concepts were developed in LEMON.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Extending Graph Interfaces Using Mixins

The low-level graph concepts define only the very basic graph
functionalities:

Node and Arc classes,
simple function-based iteration, etc.

These simple interfaces are extended to the user-level concepts, which
define a wide range of member functions and nested classes.

Low-level graph interface
class DigraphBase {
public:

// Node and Arc classes
class Node { ... };
class Arc { ... };

// Basic iteration
void first(Node& node) const;
void next(Node& node) const;
...

};

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Extending Graph Interfaces Using Mixins

High-level graph interface
template <typename DigraphBase>
class DigraphExtender : public DigraphBase {
public:

// Class-based iterators
class NodeIt : public Node {
public:

NodeIt(const DigraphExtender& g) : _graph(g) {
_graph.first(*this);

}
NodeIt& operator++() {

_graph.next(*this);
return *this;

}
...

private:
const DigraphExtender& _graph;

};
...

};

The template Mixin strategy is used: if DigraphBase implements the low-level
interface, then DigraphExtender<DigraphBase> will fulfill the user-level
concept.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Signaling Graph Alterations

The graph maps are external, auto-updated structures.
To ensure efficient data access, they are implemented using
arrays or std::vectors.

These structures have to be extended when new nodes or arcs
are added to the graph.
The graph and map classes implement the Observer design
pattern.

The graph maps guarantee strong exception safety.
If a node or arc is inserted into a graph, but an attached map
cannot be extended, then each map extended earlier is rolled
back to its original state.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Signaling Graph Alterations

The graph maps are external, auto-updated structures.
To ensure efficient data access, they are implemented using
arrays or std::vectors.

These structures have to be extended when new nodes or arcs
are added to the graph.
The graph and map classes implement the Observer design
pattern.

The graph maps guarantee strong exception safety.
If a node or arc is inserted into a graph, but an attached map
cannot be extended, then each map extended earlier is rolled
back to its original state.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Signaling Graph Alterations

The graph maps are external, auto-updated structures.
To ensure efficient data access, they are implemented using
arrays or std::vectors.

These structures have to be extended when new nodes or arcs
are added to the graph.
The graph and map classes implement the Observer design
pattern.

The graph maps guarantee strong exception safety.
If a node or arc is inserted into a graph, but an attached map
cannot be extended, then each map extended earlier is rolled
back to its original state.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Tags and Specializations

The performance and the functionality of generic libraries can be
further improved by template specializations.
In LEMON, tags are defined for several purposes, e.g. the
graphs are marked with UndirectedTag.

Tags for graphs
class ListDigraph {

typedef False UndirectedTag;
...

};
class ListGraph {

typedef True UndirectedTag;
...

};

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Tags and Specializations

For example, the function eulerian() is specialized for
undirected graphs.

A directed graph is Eulerian if it is connected and the number of
incoming and outgoing arcs are the same for each node.
An undirected graph is Eulerian if it is connected and the number
of incident edges is even for each node.

Example: specialization using tags
template<typename GR>
typename enable_if<typename GR::UndirectedTag, bool>::type
eulerian(const GR &g) {

for (typename GR::NodeIt n(g); n != INVALID; ++n)
if (countIncEdges(g, n) % 2 == 1) return false;

return connected(g);
}

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Section 3

3. Performance

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Performance

This section thoroughly compares the performance of LEMON
to BGL and LEDA.

VS

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Shortest Paths

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Sparse networks

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Dense networks

Benchmark results for Dijkstra’s algorithm:
BGL is more efficient than LEDA, especially on dense graphs.
LEMON is even slightly faster than BGL.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Maximum Flows

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Sparse networks

0.001s

0.01s

0.1s

1s

10s

100s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
BGL
LEDA

Dense networks

Benchmark results for the preflow push-relabel algorithm:
LEDA is clearly faster than BGL, especially on sparse networks.
LEMON is more efficient than both of them.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Minimum Cost Flows

0.01s

0.1s

1s

10s

100s

1000s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
LEDA

Sparse networks

0.01s

0.1s

1s

10s

100s

1000s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
LEDA

Dense networks

BGL does not provide a minimum cost flow algorithm, but it has
been among their plans for a long time.
LEMON and LEDA provide efficient implementations of the
cost scaling algorithm (and some other methods).

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Minimum Cost Flows

0.01s

0.1s

1s

10s

100s

1000s

 1000 10000 100000 1000000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
LEDA

Sparse networks

0.01s

0.1s

1s

10s

100s

1000s

 1000 10000 100000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes (log scale)

LEMON
LEDA

Dense networks

Benchmark results for the cost scaling algorithm:

LEMON clearly outperforms LEDA.

LEDA failed on the largest sparse networks with “cost overflow” error.
However, larger number type cannot be used due to the closed source.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Planar Embedding

0.001s

0.01s

0.1s

1s

 0 2000 4000 6000 8000 10000

ru
nn

in
g

tim
e

(lo
g

sc
al

e)

number of nodes

LEMON
BGL
LEDA

Benchmark results for the planar embedding method:
LEDA is much slower than BGL.
LEMON is about two times faster than BGL.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Section 4

4. History and Statistics

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

History of LEMON

2003–2007 LEMON 0.x series
Development versions without stable API.
Latest release: LEMON 0.7.

2008– LEMON 1.x series
Stable releases ensuring full reverse compatibility.
Major versions:
2008-10-13 LEMON 1.0 released
2009-05-13 LEMON 1.1 released
2010-03-19 LEMON 1.2 released

2009-03-27 LEMON joins to the COIN-OR initiative.
http://www.coin-or.org/

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

http://www.coin-or.org/

SLOC – Source Lines of Code

 0

 10000

 20000

 30000

 40000

 50000

 60000

2007-10 2008-01 2008-04 2008-07 2008-10 2009-01 2009-04 2009-07 2009-10 2010-01 2010-04

lemon test tools scripts demo Total

C++ 45,032 8340 983 238 54,593 (97.98%)
Python 513 513 (0.92%)
other 130 478 608 (1.09%)

Total: 45,032 8340 1113 991 238 55,714

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Section 5

5. Conclusions

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Conclusions

LEMON is a highly efficient, open source C++ graph template
library having clear design and convenient interface.
Comparing to similar libraries, LEMON shows remarkable
advantages both in ease of use and in performance.
Its essential algorithms turned out to be significantly more
efficient than BGL and LEDA.

For these reasons, LEMON is proved to be a remarkable
alternative to open source or commercial graph libraries.
LEMON is favorable for research, education and development in
the area of combinatorial optimization and network design.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Conclusions

LEMON is a highly efficient, open source C++ graph template
library having clear design and convenient interface.
Comparing to similar libraries, LEMON shows remarkable
advantages both in ease of use and in performance.
Its essential algorithms turned out to be significantly more
efficient than BGL and LEDA.

For these reasons, LEMON is proved to be a remarkable
alternative to open source or commercial graph libraries.
LEMON is favorable for research, education and development in
the area of combinatorial optimization and network design.

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

Thank you for the attention

Thank you for the attention!

http://lemon.cs.elte.hu

B. Dezső, A. Jüttner, P. Kovács LEMON – an Open Source C++ Graph Template Library

http://lemon.cs.elte.hu

	Overview
	Introduction to LEMON
	What is LEMON?
	Graph Structures
	Iterators
	Handling Graph Related Data
	Algorithms
	Graph Adaptors
	LP Interface
	Technical Support

	Implementation Details
	Extending Graph Interfaces Using Mixins
	Signaling Graph Alterations
	Tags and Specializations

	Performance
	History and Statistics
	Conclusions

