
Column Generation Method for an Agent
Scheduling Problem

Balázs Dezső Alpár Jüttner Péter Kovács

Dept. of Algorithms and Their Applications, and Dept. of Operations Research
Eötvös Loránd University, Budapest, Hungary

Abstract

This paper discusses a real life problem of daily schedule planning for customer
visiting agents. An optimization scheme using a combination of column generation
and rounding techniques is proposed for solving this problem. In order to realize an
efficient implementation, a polynomial time algorithm is presented for the column
generation subproblem. Some technical implementation issues are also discussed
and finally, experimental results are shown on real-life problem instances. An im-
plementation of the presented solution is currently in production use by one of the
leading contact center service providers of Hungary.

Keywords: resource planning, scheduling, column generation

1 Introduction

The problem discussed in this paper is the planning of the daily program of
customer visiting agents. Consider an insurance company employing hundreds
of agents in order to personally persuade potential customers to take out an
insurance. To do that, they first call the potential customers by phone to make
an appointment, then one of the agents will go to the place of the meeting at
the right time. For the sake of flexibility, every agent makes phone calls and
visits customers, but an appointment will not necessarily be assigned to the
same agent who contacted the customer.

1 Email: deba@inf.elte.hu, alpar@cs.elte.hu, kpeter@inf.elte.hu
2 This work was supported by OTKA grant K060802

Organizing a marketing campaign of this scale is far from being trivial.
The traditional way of doing it manually is typically suboptimal and very
inflexible. Instead, this paper proposes an optimization method for designing
the schedule for all agents at once taking the various constraints and objectives
into accounts. The presented solution is currently in production use by one of
the leading contact center service provider of Hungary.

A more formal definition of the optimization problem is the following.
We are given a set A of business agents who have to meet customers. Let M
denote the set of meeting requests. Each request has a given time, duration
and location. In addition, when the agents are not visiting customers, they
have to do other jobs in their office (e.g. they contact potential customers by
phone). Our task is to plan the work schedule of the agents for a single day.

The workday starts when the agent arrives at the office or at place of the
first meeting. Between the meetings or office shifts, they have to travel to the
next location (or to the office) either by car or by public transport depending
on the agent. Furthermore, the schedules must satisfy various constraints
in order to meet the working regulations and ensure the acceptable working
conditions of the agents.
• The agents must be provided with a 30-minute free lunch sometime between
12:00 and 14:00. (These parameters are in fact configurable.)

• The working time of the agents is limited.
• The idle time of the agents and the traveling time between any two locations
are also limited.

• There is a given minimum allowed duration of the office work.

The objective function of the optimization task comprises various quality
criteria of the proposed schedule. Namely,
• The productive activities of the agents should be maximized, therefore neg-
ative cost is assigned to the meetings and the office work. Meetings have a
priority over office work, hence the cost of them is less.

• The traveling time should also be minimized, therefore an extra penalty is
assigned to traveling times.

• We prefer bigger blocks of the same working type, thus a penalty is applied
when an agent switches between office work and meeting participation.

The rest of the paper is organized as follows. Section 2 presents an ILP
formulation of the problem (of exponential size) and also defines an LP relax-
ation of it. Then Section 3 discusses how to solve this enormous ILP problem

efficiently. Finally, Section 4 summarizes some practical experiences about the
performance of the solution.

2 ILP Formulation

This section presents a column generation based heuristic algorithm for the
optimization problem. The column generation approach is extensively used in
resource planning problems [1].

The master problem (MP) is formalized as an integer program of exponen-
tial size. Let A be the set of the agents and V be the set of visiting requests.
Let Sa be the set of the feasible schedules of the agent a, and csa is the cost of a
schedule sa ∈ Sa. Then the integer programming formulation is the following.

min
∑
a∈A

∑
sa∈Sa

csaxsa (1a)

s. t.
∑

sa∈Sa

xsa = 1 ∀a ∈ A (1b)∑
m∈sa

xsa = 1 ∀m ∈M (1c)

xsa ∈ {0, 1} ∀a ∈ A, sa ∈ Sa (1d)

The cost csa can be calculated from the properties of the schedule. If the agent
travels in tt minutes, waits for meetings in tr minutes and works in tw minutes
in the office, moreover there are nc changes between meetings and office shifts,
then we can compute the overall cost with the following expression:

csa = Cttt + Crtr −Bwtw + Ccnc (2)

We assign a binary variable xsa to each possible schedule sa of each agent a.
The constraints enforce that each meeting is fulfilled by exactly one agent and
each agent has exactly one work schedule.

In addition, let RMP denote the following linear programming relaxation
of the above formulation with the introduction of slack variables for constraints
(1c) in order to ensure that the problem is always feasible.

min
∑
a∈A

∑
sa∈Sa

csaxsa +
∑
m∈M

Hym (3a)

s. t.
∑

sa∈Sa

xsa = 1 ∀a ∈ A (3b)

∑
v∈sa

xsa + ym = 1 ∀m ∈M (3c)

xsa ≥ 0 ∀a ∈ A, sa ∈ Sa (3d)
ym ≥ 0 ∀m ∈M (3e)

where H is a sufficiently large number. The dual linear program of RMP is
the following.

max
∑
a∈A

wa +
∑
m∈M

zm (4a)

s. t. wa +
∑
m∈sa

zm ≤ csa ∀a ∈ A,∀sa ∈ Sa (4b)

ym ≤ H ∀m ∈M (4c)
wa ∈ R ∀a ∈ A (4d)
zm ∈ R ∀m ∈M (4e)

3 Solution Method

The proposed solution is based on an iterative rounding of the LP relaxation
of the above formulation. We fix the schedule of one agent in each iteration.
For this, (a) we find an (approximate) solution to RMP, then based on this
solution, we choose an agent and (b) fix a schedule for her by rounding the
corresponding fractional variables xsa , sa ∈ Sa. Then we delete this agent
and the requests covered by her schedule from the problem and repeat steps
(a) and (b) until we find a schedule for each agent.

3.1 Solving RMP

To deal with the fact that the size of RMP can be enormous (exponential
in the number of the meeting requests), we use the usual column generation
approach [6], as briefly described below.

Instead of keeping the whole problem in the memory, we maintain a rea-
sonably sized subset of the columns, i.e. a limited number of possible schedules
S ′a ⊂ Sa for each agent a ∈ A. Then we find a solution xsa to this subset of
RMP together with the corresponding dual solution wa, ym. Now, we check
whether (4b) holds for all agents a ∈ A and for all schedules sa ∈ Sa. If yes,
then xsa is in fact the optimal solution. If not, then we add the column corre-
sponding the failed dual constraint to the problem and iterate the above steps
until the optimum is found or a certain time limit is reached.

Therefore the core of this scheme is the subroutine that checks the feasi-
bility of a dual solution and finds a failed constraint if it is not feasible.

3.1.1 Column Generation with Dynamic Programming Method
During the algorithm, we have to find feasible schedules which violate the
inequality (4b). It can be done by searching the schedule with the smallest
reduced cost for agent a, i.e.

min csa − wa +
∑
m∈sa

zm (5)

The problem can be formulated as finding a resource constrained shortest
path. Let us define a directed graph G = (V, E) as follows. We assign a node
in the graph to each meeting request. Between two meetings m1 and m2,
the agents can do only a couple of different things. We add a directed edge
m1 −→ m2 to each of these actions whenever it is feasible (parallel edges are
allowed), and assign the cost corresponding to the action. Namely, the choices
are the following.
• The agent can go directly to the place of m2.
• If there is enough time between the meetings, she can go to the office for
internal work.

• The agent can also have a lunch time between the meetings.

So, the traveling time is calculated between every pair of meetings m1 and
m2, both directly and through the office location. The travel time has to fit
in to the time gap, and the travel lengths must be shorter than a threshold
value. Moreover, if the agent goes to the office, she has to stay there for at
least a certain time period, which is necessary to do effective work.

Each path in this graph almost determines a schedule, but the periods
before the first and after the last requests are not fixed. Therefore additional
edges are assigned to the graph which belong to the exterior schedule. The
schedules must consist of an internal path and from an external edge between
the same starting and finishing nodes.

A cost function c : E → R is defined on the edges, which can be calculated
based on equation (2). The cost of a schedule can be determined as the total
cost on the corresponding path and external edge. To get the reduced cost of
a schedule, we have to subtract the dual values zm from the path cost.

The agents’ working time must include the lunch time. Thus we assign
another function r : E → {0, 1} to the edges depending on whether it includes
a lunch period (the external edge may include a lunch period, as well).

Claim 3.1 The optimal schedule is the minimum cost feasible combination of
the internal paths and external edges for all pairs of nodes.

We use label setting resource constrained shortest path algorithm [4] for
finding a schedule with minimum cost and exactly one lunch period. Since
both an internal path and an external edge have to be find, we calculate the
shortest paths on the internal edges between each pair of nodes in the graph.
Note that the edges are directed from an earlier event to a later one, thus the
walks obtained by the label setting algorithm are simple paths.

The label setting method is not polynomial in general, but in our case, the
resource function has only two values, which ensures the polynomiality.

Claim 3.2 The dynamic programming algorithm for column generation runs
in polynomial time.

If n is the number of the meeting requests, then the graph can have O(n2)
edges. Therefore the shortest paths from an arbitrary starting node can be
calculated in O(n2) time. This yields O(n3) total running time for finding the
optimal schedule.

3.2 Rounding Phase

Once we have a solution for RMP, the rounding phase is easy. We simply eval-
uate each of the K largest primal variables, and compute the increase in the
cost function when this variable is set to 1 and all others for the corresponding
agent are set to 0. We choose the one resulting in the least increment and
fix the corresponding schedule sa for the agent a. Then we remove agent a
and all covered requests from the problem and repeat the column generation
and rounding phases until the schedule of each agent is fixed. Similar greedy
rounding technique is used in airline crew scheduling, as well [2].

3.3 Implementation Details

This optimization problem came from the real life and the proposed solution
is currently in production use. To develop a reliable and efficient solution, a
couple of technical issues must be dealt with.

Because of running time efficiency, the algorithm was implemented in C++
language, and several third party libraries were used. For example, various
minor tools of LEMON [5] turned out to be very useful, as well as its high-
level and solver independent LP and MIP interface. The GLPK LP solver
library [3] was used as the back-end.

Estimating the travel times between the geographical locations is a major

difficulty in practice. Accurate values can be obtained using on-line route
planner services, but it is a costly operation, both in terms of money and in
terms of time. Therefore a mixed strategy was developed for this purpose.
First, a simple straight line distance based estimation is used in the dynamic
programming algorithm (using a pessimistic calibration), but the accurate
travel times are queried when a column is added to the problem. Moreover,
once a travel time between two locations has been queried, this value is stored
and it will be used even in the dynamic programming method later on.

4 Experimental Results

The algorithm has been evaluated with respect to the running time and ob-
jective value aspects using 10 real-life input instances. In these test cases, the
number of the agents is between 75 and and 95, and the number of meeting
requests is between 100 and 185.

Fig. 1(a) shows the change of the objective value in the improvement phase.
For numerical comparison, the optimal solution of the relaxed problem was
also calculated. Our experiments show that the gap between this value and
the obtained integer solution is quite small. It also means that the optimal
fractional and integer solutions are usually close to each other for this problem.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 200 400 600 800 1000 1200

objective value

(a) Improvement phase
 480000

 490000

 500000

 510000

 520000

 530000

 540000

 550000

 560000

 570000

 0 100 200 300 400 500 600

objective value
fixing points

(b) Rounding phase

Fig. 1. Change in the objective value

Fig. 1(b) shows a typical result of the rounding phase. Most of the fixations
do not raise the objective value, therefore they follow each other directly. On
the other hand, some fixations increase the objective value significantly, but it
can be decreased back close to its original value by some improvement steps.

The algorithm was tuned by setting the maximum number of generated
new columns per rounding phase in order to meet the customer’s request. For
usual input sizes, the results are obtained within a couple of minutes. This
running time is dominated by the web service access.

5 Concluding Remarks

During the real life application of the presented method, various new require-
ments was requested by the customer. We conclude the paper by shortly
sketching how these extensions could be integrated into the original frame-
work.

A general goal is that a balanced schedule has to be achieved, i.e. both
office and visit shifts should be assigned to each agent. Additionally, the
experienced agents should get more meetings in a day, while at most one visit
should be assigned to the beginners. These requirements are assumed to be
soft constraints, thus they are encoded into the objective function.

Such constraints can be handled easily with introducing new resources
in the dynamic programming algorithm. The number of meetings and the
existence of an office shift are registered in the labels. If the meeting number
exceeds or does not reach the limit, then the cost of the schedule is increased
proportionally to the deficit or the surplus. Moreover, if the agent does not
have office or meeting shift, an additional constant is added to the schedule
cost value. Since the number of meetings is limited by a small constant, which
is independent of the number of agents and requests, the modified algorithm
is also polynomial.

References

[1] Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh and P. H.
Vance, Branch-and-price: Column generation for solving huge integer programs,
Oper. Res. 46 (1998), pp. 316–329.

[2] Borndörfer, R., U. Schelten, T. Schlechte and S. Weider, A column generation
approach to airline crew scheduling, Technical report, Konrad Zuse Institute,
Berlin (2005).

[3] GLPK – GNU Linear Programming Kit, http://www.gnu.org/software/glpk/
(2009).

[4] Irnich, S. and G. Desaulniers, Shortest path problems with resource constraints,
Column Generation (2005), pp. 33–65.

[5] LEMON – Library for Efficient Modeling and Optimization in Networks, http:
//lemon.cs.elte.hu/ (2009).

[6] Lübbecke, M. E. and J. Desrosiers, Selected topics in column generation, Oper.
Res. 53 (2005), pp. 1007–1023.

http://www.gnu.org/software/glpk/
http://lemon.cs.elte.hu/
http://lemon.cs.elte.hu/

	Introduction
	ILP Formulation
	Solution Method
	Solving RMP
	Rounding Phase
	Implementation Details

	Experimental Results
	Concluding Remarks
	References

