| 1 | /* -*- C++ -*- |
| 2 | * |
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
| 4 | * |
| 5 | * Copyright (C) 2003-2008 |
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | * |
| 9 | * Permission to use, modify and distribute this software is granted |
| 10 | * provided that this copyright notice appears in all copies. For |
| 11 | * precise terms see the accompanying LICENSE file. |
| 12 | * |
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
| 14 | * express or implied, and with no claim as to its suitability for any |
| 15 | * purpose. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #ifndef LEMON_SUURBALLE_H |
| 20 | #define LEMON_SUURBALLE_H |
| 21 | |
| 22 | ///\ingroup shortest_path |
| 23 | ///\file |
| 24 | ///\brief An algorithm for finding arc-disjoint paths between two |
| 25 | /// nodes having minimum total length. |
| 26 | |
| 27 | #include <vector> |
| 28 | #include <lemon/bin_heap.h> |
| 29 | #include <lemon/path.h> |
| 30 | |
| 31 | namespace lemon { |
| 32 | |
| 33 | /// \addtogroup shortest_path |
| 34 | /// @{ |
| 35 | |
| 36 | /// \brief Implementation of an algorithm for finding arc-disjoint |
| 37 | /// paths between two nodes having minimum total length. |
| 38 | /// |
| 39 | /// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
| 40 | /// finding arc-disjoint paths having minimum total length (cost) |
| 41 | /// from a given source node to a given target node in a directed |
| 42 | /// digraph. |
| 43 | /// |
| 44 | /// In fact, this implementation is the specialization of the |
| 45 | /// \ref CapacityScaling "successive shortest path" algorithm. |
| 46 | /// |
| 47 | /// \tparam Digraph The directed digraph type the algorithm runs on. |
| 48 | /// \tparam LengthMap The type of the length (cost) map. |
| 49 | /// |
| 50 | /// \warning Length values should be \e non-negative \e integers. |
| 51 | /// |
| 52 | /// \note For finding node-disjoint paths this algorithm can be used |
| 53 | /// with \ref SplitDigraphAdaptor. |
| 54 | /// |
| 55 | /// \author Attila Bernath and Peter Kovacs |
| 56 | |
| 57 | template < typename Digraph, |
| 58 | typename LengthMap = typename Digraph::template ArcMap<int> > |
| 59 | class Suurballe |
| 60 | { |
| 61 | TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 62 | |
| 63 | typedef typename LengthMap::Value Length; |
| 64 | typedef ConstMap<Arc, int> ConstArcMap; |
| 65 | typedef typename Digraph::template NodeMap<Arc> PredMap; |
| 66 | |
| 67 | public: |
| 68 | |
| 69 | /// The type of the flow map. |
| 70 | typedef typename Digraph::template ArcMap<int> FlowMap; |
| 71 | /// The type of the potential map. |
| 72 | typedef typename Digraph::template NodeMap<Length> PotentialMap; |
| 73 | /// The type of the path structures. |
| 74 | typedef SimplePath<Digraph> Path; |
| 75 | |
| 76 | private: |
| 77 | |
| 78 | /// \brief Special implementation of the \ref Dijkstra algorithm |
| 79 | /// for finding shortest paths in the residual network. |
| 80 | /// |
| 81 | /// \ref ResidualDijkstra is a special implementation of the |
| 82 | /// \ref Dijkstra algorithm for finding shortest paths in the |
| 83 | /// residual network of the digraph with respect to the reduced arc |
| 84 | /// lengths and modifying the node potentials according to the |
| 85 | /// distance of the nodes. |
| 86 | class ResidualDijkstra |
| 87 | { |
| 88 | typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 89 | typedef BinHeap<Length, HeapCrossRef> Heap; |
| 90 | |
| 91 | private: |
| 92 | |
| 93 | // The directed digraph the algorithm runs on |
| 94 | const Digraph &_graph; |
| 95 | |
| 96 | // The main maps |
| 97 | const FlowMap &_flow; |
| 98 | const LengthMap &_length; |
| 99 | PotentialMap &_potential; |
| 100 | |
| 101 | // The distance map |
| 102 | PotentialMap _dist; |
| 103 | // The pred arc map |
| 104 | PredMap &_pred; |
| 105 | // The processed (i.e. permanently labeled) nodes |
| 106 | std::vector<Node> _proc_nodes; |
| 107 | |
| 108 | Node _s; |
| 109 | Node _t; |
| 110 | |
| 111 | public: |
| 112 | |
| 113 | /// Constructor. |
| 114 | ResidualDijkstra( const Digraph &digraph, |
| 115 | const FlowMap &flow, |
| 116 | const LengthMap &length, |
| 117 | PotentialMap &potential, |
| 118 | PredMap &pred, |
| 119 | Node s, Node t ) : |
| 120 | _graph(digraph), _flow(flow), _length(length), _potential(potential), |
| 121 | _dist(digraph), _pred(pred), _s(s), _t(t) {} |
| 122 | |
| 123 | /// \brief Runs the algorithm. Returns \c true if a path is found |
| 124 | /// from the source node to the target node. |
| 125 | bool run() { |
| 126 | HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 127 | Heap heap(heap_cross_ref); |
| 128 | heap.push(_s, 0); |
| 129 | _pred[_s] = INVALID; |
| 130 | _proc_nodes.clear(); |
| 131 | |
| 132 | // Processing nodes |
| 133 | while (!heap.empty() && heap.top() != _t) { |
| 134 | Node u = heap.top(), v; |
| 135 | Length d = heap.prio() + _potential[u], nd; |
| 136 | _dist[u] = heap.prio(); |
| 137 | heap.pop(); |
| 138 | _proc_nodes.push_back(u); |
| 139 | |
| 140 | // Traversing outgoing arcs |
| 141 | for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
| 142 | if (_flow[e] == 0) { |
| 143 | v = _graph.target(e); |
| 144 | switch(heap.state(v)) { |
| 145 | case Heap::PRE_HEAP: |
| 146 | heap.push(v, d + _length[e] - _potential[v]); |
| 147 | _pred[v] = e; |
| 148 | break; |
| 149 | case Heap::IN_HEAP: |
| 150 | nd = d + _length[e] - _potential[v]; |
| 151 | if (nd < heap[v]) { |
| 152 | heap.decrease(v, nd); |
| 153 | _pred[v] = e; |
| 154 | } |
| 155 | break; |
| 156 | case Heap::POST_HEAP: |
| 157 | break; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | // Traversing incoming arcs |
| 163 | for (InArcIt e(_graph, u); e != INVALID; ++e) { |
| 164 | if (_flow[e] == 1) { |
| 165 | v = _graph.source(e); |
| 166 | switch(heap.state(v)) { |
| 167 | case Heap::PRE_HEAP: |
| 168 | heap.push(v, d - _length[e] - _potential[v]); |
| 169 | _pred[v] = e; |
| 170 | break; |
| 171 | case Heap::IN_HEAP: |
| 172 | nd = d - _length[e] - _potential[v]; |
| 173 | if (nd < heap[v]) { |
| 174 | heap.decrease(v, nd); |
| 175 | _pred[v] = e; |
| 176 | } |
| 177 | break; |
| 178 | case Heap::POST_HEAP: |
| 179 | break; |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | if (heap.empty()) return false; |
| 185 | |
| 186 | // Updating potentials of processed nodes |
| 187 | Length t_dist = heap.prio(); |
| 188 | for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 189 | _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
| 190 | return true; |
| 191 | } |
| 192 | |
| 193 | }; //class ResidualDijkstra |
| 194 | |
| 195 | private: |
| 196 | |
| 197 | // The directed digraph the algorithm runs on |
| 198 | const Digraph &_graph; |
| 199 | // The length map |
| 200 | const LengthMap &_length; |
| 201 | |
| 202 | // Arc map of the current flow |
| 203 | FlowMap *_flow; |
| 204 | bool _local_flow; |
| 205 | // Node map of the current potentials |
| 206 | PotentialMap *_potential; |
| 207 | bool _local_potential; |
| 208 | |
| 209 | // The source node |
| 210 | Node _source; |
| 211 | // The target node |
| 212 | Node _target; |
| 213 | |
| 214 | // Container to store the found paths |
| 215 | std::vector< SimplePath<Digraph> > paths; |
| 216 | int _path_num; |
| 217 | |
| 218 | // The pred arc map |
| 219 | PredMap _pred; |
| 220 | // Implementation of the Dijkstra algorithm for finding augmenting |
| 221 | // shortest paths in the residual network |
| 222 | ResidualDijkstra *_dijkstra; |
| 223 | |
| 224 | public: |
| 225 | |
| 226 | /// \brief Constructor. |
| 227 | /// |
| 228 | /// Constructor. |
| 229 | /// |
| 230 | /// \param digraph The directed digraph the algorithm runs on. |
| 231 | /// \param length The length (cost) values of the arcs. |
| 232 | /// \param s The source node. |
| 233 | /// \param t The target node. |
| 234 | Suurballe( const Digraph &digraph, |
| 235 | const LengthMap &length, |
| 236 | Node s, Node t ) : |
| 237 | _graph(digraph), _length(length), _flow(0), _local_flow(false), |
| 238 | _potential(0), _local_potential(false), _source(s), _target(t), |
| 239 | _pred(digraph) {} |
| 240 | |
| 241 | /// Destructor. |
| 242 | ~Suurballe() { |
| 243 | if (_local_flow) delete _flow; |
| 244 | if (_local_potential) delete _potential; |
| 245 | delete _dijkstra; |
| 246 | } |
| 247 | |
| 248 | /// \brief Sets the flow map. |
| 249 | /// |
| 250 | /// Sets the flow map. |
| 251 | /// |
| 252 | /// The found flow contains only 0 and 1 values. It is the union of |
| 253 | /// the found arc-disjoint paths. |
| 254 | /// |
| 255 | /// \return \c (*this) |
| 256 | Suurballe& flowMap(FlowMap &map) { |
| 257 | if (_local_flow) { |
| 258 | delete _flow; |
| 259 | _local_flow = false; |
| 260 | } |
| 261 | _flow = ↦ |
| 262 | return *this; |
| 263 | } |
| 264 | |
| 265 | /// \brief Sets the potential map. |
| 266 | /// |
| 267 | /// Sets the potential map. |
| 268 | /// |
| 269 | /// The potentials provide the dual solution of the underlying |
| 270 | /// minimum cost flow problem. |
| 271 | /// |
| 272 | /// \return \c (*this) |
| 273 | Suurballe& potentialMap(PotentialMap &map) { |
| 274 | if (_local_potential) { |
| 275 | delete _potential; |
| 276 | _local_potential = false; |
| 277 | } |
| 278 | _potential = ↦ |
| 279 | return *this; |
| 280 | } |
| 281 | |
| 282 | /// \name Execution control |
| 283 | /// The simplest way to execute the algorithm is to call the run() |
| 284 | /// function. |
| 285 | /// \n |
| 286 | /// If you only need the flow that is the union of the found |
| 287 | /// arc-disjoint paths, you may call init() and findFlow(). |
| 288 | |
| 289 | /// @{ |
| 290 | |
| 291 | /// \brief Runs the algorithm. |
| 292 | /// |
| 293 | /// Runs the algorithm. |
| 294 | /// |
| 295 | /// \param k The number of paths to be found. |
| 296 | /// |
| 297 | /// \return \c k if there are at least \c k arc-disjoint paths |
| 298 | /// from \c s to \c t. Otherwise it returns the number of |
| 299 | /// arc-disjoint paths found. |
| 300 | /// |
| 301 | /// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
| 302 | /// shortcut of the following code. |
| 303 | /// \code |
| 304 | /// s.init(); |
| 305 | /// s.findFlow(k); |
| 306 | /// s.findPaths(); |
| 307 | /// \endcode |
| 308 | int run(int k = 2) { |
| 309 | init(); |
| 310 | findFlow(k); |
| 311 | findPaths(); |
| 312 | return _path_num; |
| 313 | } |
| 314 | |
| 315 | /// \brief Initializes the algorithm. |
| 316 | /// |
| 317 | /// Initializes the algorithm. |
| 318 | void init() { |
| 319 | // Initializing maps |
| 320 | if (!_flow) { |
| 321 | _flow = new FlowMap(_graph); |
| 322 | _local_flow = true; |
| 323 | } |
| 324 | if (!_potential) { |
| 325 | _potential = new PotentialMap(_graph); |
| 326 | _local_potential = true; |
| 327 | } |
| 328 | for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
| 329 | for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
| 330 | |
| 331 | _dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
| 332 | *_potential, _pred, |
| 333 | _source, _target ); |
| 334 | } |
| 335 | |
| 336 | /// \brief Executes the successive shortest path algorithm to find |
| 337 | /// an optimal flow. |
| 338 | /// |
| 339 | /// Executes the successive shortest path algorithm to find a |
| 340 | /// minimum cost flow, which is the union of \c k or less |
| 341 | /// arc-disjoint paths. |
| 342 | /// |
| 343 | /// \return \c k if there are at least \c k arc-disjoint paths |
| 344 | /// from \c s to \c t. Otherwise it returns the number of |
| 345 | /// arc-disjoint paths found. |
| 346 | /// |
| 347 | /// \pre \ref init() must be called before using this function. |
| 348 | int findFlow(int k = 2) { |
| 349 | // Finding shortest paths |
| 350 | _path_num = 0; |
| 351 | while (_path_num < k) { |
| 352 | // Running Dijkstra |
| 353 | if (!_dijkstra->run()) break; |
| 354 | ++_path_num; |
| 355 | |
| 356 | // Setting the flow along the found shortest path |
| 357 | Node u = _target; |
| 358 | Arc e; |
| 359 | while ((e = _pred[u]) != INVALID) { |
| 360 | if (u == _graph.target(e)) { |
| 361 | (*_flow)[e] = 1; |
| 362 | u = _graph.source(e); |
| 363 | } else { |
| 364 | (*_flow)[e] = 0; |
| 365 | u = _graph.target(e); |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | return _path_num; |
| 370 | } |
| 371 | |
| 372 | /// \brief Computes the paths from the flow. |
| 373 | /// |
| 374 | /// Computes the paths from the flow. |
| 375 | /// |
| 376 | /// \pre \ref init() and \ref findFlow() must be called before using |
| 377 | /// this function. |
| 378 | void findPaths() { |
| 379 | // Creating the residual flow map (the union of the paths not |
| 380 | // found so far) |
| 381 | FlowMap res_flow(_graph); |
| 382 | for(ArcIt a(_graph);a!=INVALID;++a) res_flow[a]=(*_flow)[a]; |
| 383 | |
| 384 | paths.clear(); |
| 385 | paths.resize(_path_num); |
| 386 | for (int i = 0; i < _path_num; ++i) { |
| 387 | Node n = _source; |
| 388 | while (n != _target) { |
| 389 | OutArcIt e(_graph, n); |
| 390 | for ( ; res_flow[e] == 0; ++e) ; |
| 391 | n = _graph.target(e); |
| 392 | paths[i].addBack(e); |
| 393 | res_flow[e] = 0; |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /// @} |
| 399 | |
| 400 | /// \name Query Functions |
| 401 | /// The result of the algorithm can be obtained using these |
| 402 | /// functions. |
| 403 | /// \n The algorithm should be executed before using them. |
| 404 | |
| 405 | /// @{ |
| 406 | |
| 407 | /// \brief Returns a const reference to the arc map storing the |
| 408 | /// found flow. |
| 409 | /// |
| 410 | /// Returns a const reference to the arc map storing the flow that |
| 411 | /// is the union of the found arc-disjoint paths. |
| 412 | /// |
| 413 | /// \pre \ref run() or findFlow() must be called before using this |
| 414 | /// function. |
| 415 | const FlowMap& flowMap() const { |
| 416 | return *_flow; |
| 417 | } |
| 418 | |
| 419 | /// \brief Returns a const reference to the node map storing the |
| 420 | /// found potentials (the dual solution). |
| 421 | /// |
| 422 | /// Returns a const reference to the node map storing the found |
| 423 | /// potentials that provide the dual solution of the underlying |
| 424 | /// minimum cost flow problem. |
| 425 | /// |
| 426 | /// \pre \ref run() or findFlow() must be called before using this |
| 427 | /// function. |
| 428 | const PotentialMap& potentialMap() const { |
| 429 | return *_potential; |
| 430 | } |
| 431 | |
| 432 | /// \brief Returns the flow on the given arc. |
| 433 | /// |
| 434 | /// Returns the flow on the given arc. |
| 435 | /// It is \c 1 if the arc is involved in one of the found paths, |
| 436 | /// otherwise it is \c 0. |
| 437 | /// |
| 438 | /// \pre \ref run() or findFlow() must be called before using this |
| 439 | /// function. |
| 440 | int flow(const Arc& arc) const { |
| 441 | return (*_flow)[arc]; |
| 442 | } |
| 443 | |
| 444 | /// \brief Returns the potential of the given node. |
| 445 | /// |
| 446 | /// Returns the potential of the given node. |
| 447 | /// |
| 448 | /// \pre \ref run() or findFlow() must be called before using this |
| 449 | /// function. |
| 450 | Length potential(const Node& node) const { |
| 451 | return (*_potential)[node]; |
| 452 | } |
| 453 | |
| 454 | /// \brief Returns the total length (cost) of the found paths (flow). |
| 455 | /// |
| 456 | /// Returns the total length (cost) of the found paths (flow). |
| 457 | /// The complexity of the function is \f$ O(e) \f$. |
| 458 | /// |
| 459 | /// \pre \ref run() or findFlow() must be called before using this |
| 460 | /// function. |
| 461 | Length totalLength() const { |
| 462 | Length c = 0; |
| 463 | for (ArcIt e(_graph); e != INVALID; ++e) |
| 464 | c += (*_flow)[e] * _length[e]; |
| 465 | return c; |
| 466 | } |
| 467 | |
| 468 | /// \brief Returns the number of the found paths. |
| 469 | /// |
| 470 | /// Returns the number of the found paths. |
| 471 | /// |
| 472 | /// \pre \ref run() or findFlow() must be called before using this |
| 473 | /// function. |
| 474 | int pathNum() const { |
| 475 | return _path_num; |
| 476 | } |
| 477 | |
| 478 | /// \brief Returns a const reference to the specified path. |
| 479 | /// |
| 480 | /// Returns a const reference to the specified path. |
| 481 | /// |
| 482 | /// \param i The function returns the \c i-th path. |
| 483 | /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
| 484 | /// |
| 485 | /// \pre \ref run() or findPaths() must be called before using this |
| 486 | /// function. |
| 487 | Path path(int i) const { |
| 488 | return paths[i]; |
| 489 | } |
| 490 | |
| 491 | /// @} |
| 492 | |
| 493 | }; //class Suurballe |
| 494 | |
| 495 | ///@} |
| 496 | |
| 497 | } //namespace lemon |
| 498 | |
| 499 | #endif //LEMON_SUURBALLE_H |